潍坊正规废钼回收收购厂家
在化学元素周期表中,钼元素不怎么引人注“钼”,它不像铝、铁那样常见,不如铂、金贵重,更不似氧、氢那般构成了生命的主体。然而,钼元素与人类的关系其实密切,而关于钼元素的方方面面,有一些趣事你可能并不了解。
钼曾被误认为铅
虽然早在14世纪,人们就懂得利用含钼的钢铁来锻造军刀,但那个时候,人们还没有意识到钼元素的存在。原因在于,钼元素在地壳中的含量约为百万分之一,分布也比较分散,属于比较稀有的金属。而且,钼元素往往不是以单质的形式存在,主要与硫结合成化合物,形成辉钼矿,或者偶尔与铅、铜组合,生成铅钼矿和铜钼矿。
16世纪之前,当人们发现辉钼矿的时候,看到它为铅灰,具有金属的光泽,而且辉钼矿多以细微柔软的鳞片状产出,具有挠性(金属或矿物受力发生变形,在作用力失去之后不能恢复原状的性质称为挠性,与“弹性”相对),摸起来还有种油腻的感觉。这和石墨的性质十分相似,所以辉钼矿被误以为是石墨。后来,人们在寻找铅矿石的时候,发现辉钼矿的外观类似于方铅矿,于是,又把钼误认为是铅。所以,人们便用古希腊语中的“molybdos”(意思是“铅”)命名辉钼矿。
直到1778年,德国化学家卡尔·舍勒才首次实,钼辉矿并不是方铅矿,也不是石墨,而是一种新的矿物,含有新的元素。但是,舍勒没有办法将这种新的元素从矿石中分离出来,所以他没能成为个发现钼元素的科学家。有趣的是,舍勒被后世称为“倒霉蛋科学家”,他的坏运气就是从错失钼元素开始的,后来舍勒又从空气可以助燃的实验现象中差点发现了氧气,但却因为迷信燃素说而将发现氧气的机会留给了安托万·拉瓦锡。
在舍勒之后,其他科学家也试图从辉钼矿中提取出新元素,他们让辉钼矿发生氧化反应,然后将粉末放入水中,形成钼酸,但仍然无法从中析出钼金属。终于,在1781年,瑞典化学家彼得·海基尔姆幸运地摘取了科学果实。他将碳粉、亚麻籽油和钼酸混在一起,搅拌成糊状,然后用封闭的坩埚对这一团“浆糊”加热。终于,海基尔姆用这样的“碳还原法”将新的金属从辉钼矿中分离出来,他随即将该金属命名为“钼”。至此,人们才开始了解到钼元素的真面目。
战争使钼名扬天下
1781年,人们开始懂得如何得到金属钼,但此后的100多年里,全世界金属钼的总产量也不超过10吨。由于钼元素易于氧化,且冶炼和加工水平有限,人们似乎还不知道如何将这种金属大规模地应用到工业生产中来。
不过,钼元素适合重工业的优点还是有目共睹的,它硬而坚韧、耐腐蚀、耐高温,熔点仅次于钨、钽,它注定会成为人类重要的工业原料。1891年,法国施耐德公司率先将钼作为合金元素生产出了含钼的钢板,发现其性能,而且钼的密度仅是钨的一半,钼便逐渐取代钨成为炼钢的合金元素。到了20世纪,人类爆发了两场规模空前的世界大战,统计资料显示,在次世界大战中,钼的年产量从数吨瞬间飙升到了100吨,而到了二战时期,又增长至1万吨。为何战争促进了钼的生产?这是因为它太有用了。
我们知道,“陆战”——坦克就是在一战中发明的。初,英国人为了增强坦克的防御力,给坦克安装了75毫米厚的锰钢板,但这种笨重的坦克在战争中表现得并不怎么样。后来,英国人通过试验,将锰钢板换成钼钢板,在不削弱防御力的前提下使得坦克的厚度减了50毫米,结果,更加机动灵活的坦克才得以大显神威。
同样,德国的攻坚——“大贝尔莎”巨炮,也是用钼钢做成的。一战前期,应德国总参谋部的要求,德国工业巨头克虏伯公司研制出了史无前例的重炮,并以古斯塔夫·克虏伯的妻子贝尔莎命名。“大贝尔莎”的口径为420毫米,炮身重43吨,需要200位德国军人花6个星期才能组装完毕。更吓人的是,“大贝尔莎”的重820千克,射程15千米,再坚固的工事也经不住它来这么一发。克虏伯之所以能够研制出威力如此惊人的巨炮,其秘诀就在于使用了材质的钼钢来制作炮身,因为当“大贝尔莎”发射时,只有耐高温的钼能够抵御产生的热量,以免熔化炮身。
到了第二次世界大战,钼元素同样发挥着重要的作用。当时,战场上的坦克莫过于德国的式坦克,其类型包含Ⅰ型和Ⅱ型两种。从1942年服役至1945年德国投降,式坦克一直活跃于战场线,它所向披靡,抵挡。不过,在库尔斯克会战中,苏联人俘获Ⅱ型坦克后对其进行了测试,发现Ⅱ型坦克并不像传说中的那样坚不可摧,虽然它装甲很厚,但是防御效果相对于Ⅰ型并未有较大提升。之所以出现这种状况,其实是由于德军所占领的挪威克纳本钼矿在1943年被盟军轰炸,从而使德军失去了钼的来源。战争初期,德军的Ⅰ型坦克都采用了钼钢,这种钼钢耐腐蚀,在高温条件下仍然具有较高的强度,而Ⅱ型坦克的厚装甲中已经无钼可用,所以影响了德军装甲部队的战斗力。
钼是多才多艺的金属
两次世界大战使人们意识到钼对于军事的重要作用,战后,钼的年产量由10万吨上升到如今的20多万吨。钼在“战争金属”美誉的同时,其应用范围也越来越广,是在核能、医疗等高科技领域发挥着越来越重要的作用。
2018年,俄罗斯的莫斯科工程物理学院的科学家们发表了一项关于核燃料保护套的研究,他们使用钼合金代替现有的锆合金来用作核燃料保护外壳,可以提高核电站的性。
在现有的核电站中,铀燃料棒是安装在锆合金保护外壳内的。锆合金具有很高的耐腐蚀性,而且锆几乎不会和中子反应,所以是好的核燃料棒保护外壳。但是,在端情况下,比如由于地震和海啸导致应急冷却系统出现故障时,核反应堆内冷却水的水平面会一直下降,使铀燃料棒处于裸露状态,那么冷却不足会使高温的锆合金外壳与高温水蒸气产生氢化作用(即锆水反应),这会导致反应炉熔毁以及氢气爆炸——2011年的日本福岛核电站事故就是这样发生的。如果想要避免类似的事故,办法之一就是寻找一种比锆合金更优秀的核燃料棒保护外壳,而在众多金属材料中,只有钼同时满足比锆更耐腐蚀、更耐热、有更高的导热性以及更小的中子截面积(意味着不与中子反应)的条件,因而特制的钼合金很可能会在未来成为核电站防护装置的主要材料。
钼元素还被应用于医疗实践。比如,锝99是应用广泛的放射性造影剂,不过,锝99只能由一种方式制备,那就是钼99衰变。钼99是钼的一种放射性同位素,它的半衰期为2.75天,半衰期过后,钼99衰变为锝99。钼99的半衰期理想,这个时间不但了钼原子在原料地到医疗场所的运输过程具有的稳定性,而且了锝99的放射性可以在短时间内。如果半衰期过短,在运输过程中,钼原子可能产生放射性辐射的危险;如果半衰期过长,将影响医疗诊断的效率。在核医学中,80%的医疗到了锝99,而在美国,每天使用锝99的诊断就达 55000多起,所以,钼的重要性不言而喻。
生命对钼很敏感
生物老师常常会讲一个故事:某一年,新西兰的一个牧场遭遇了干旱,大量牧草枯萎而死,但有一条矿工经常踩踏的小路边上生长着茂密的绿草。这是为什么呢?原来这里的矿场是钼矿,矿工们每天工作,身上难免会沾上矿渣,当他们走路时不经意间将矿渣撒落在小路上,就如同上天赐予的“大补丸”,给路边的小草提供了的养料。另外,科学已经明,对农作物施加钼肥,可以增强农作物的抗病、抗旱和抗旱能力,提高产量。比如,根据科学家的统计,每亩农田施加钼肥20克,可使小麦增产35%,而大豆则可增产47%,蚕豆增产8%,绿豆增产32.8%,番茄增产75%。
钼不仅是植物生长和发育中的微量元素,也是植物发挥固氮功能的重要元素。氮是生命之源,有了氮,植物才变得有营养。然而,植物并不能直接吸收空气中的氮气,它们需要在固氮菌的帮助下,通过化学反应将氮元素吸收并存储起来。固氮菌为植物固氮的过程很复杂,需要一种催化剂,名为固氮酶,金属钼正是固氮酶的重要成分。每年,植物固氮总量约1亿吨,远超过人工固氮量,这都是钼元素的功劳。
不仅植物需要钼,我们人体内也需要钼,只不过需量少。成年人体内大约只有9毫克钼,而且它们分散在身体的各个部分。虽然如此,我们对于钼还是敏感的。比如,钼与我们头发的颜有关,因为钼元素会使头发偏红褐。又比如,我们的情绪也容易受钼的影响,有它,我们会精力充沛,神气十足,缺少或无它,我们会感到疲惫不堪,浑身乏力。钼为什么有这么大的本事呢?原因在于,钼是两种在新陈代谢中起重要作用的酶的组成成分,一是黄嘌呤氧化酶,一是亚硫酸盐氧化酶。这两种酶有钼存在时才具有活力,没有钼,就会失去活力,起不了催化作用。
由于钼在食物中比较广泛地存在着,小麦、豆类、猪肉、牛奶、蜂蜜都含有钼,人对于钼的需要量也不高,所以我们一般不会缺钼。如果身体摄入多余的钼,反而会引起金属中毒。
由此看来,钼这种罕见的元素,与我们的日常生活还真息息相关呢。
近日钼矿价格持续走高,引发市场关注。
国内方面,1月29日,河南栾川地区一矿山企业竞标销售钼精矿,其中47%以上品位钼480吨,加权平均价为5278元/吨度(现款),50%品位120吨,加权平均5413吨/吨度,综合加权5305元/吨度,再高。
国外方面,根据百川盈孚数据,春节期间(1.20-1.27),欧洲钼铁均价由82美元/磅钼上涨至86.5美元/磅钼(折合国内价39.79万元/基吨,而节前国内钼铁均价仅30.25万元/基吨),涨幅5.5%,欧洲钼铁均价较1月11日低点已上涨22.7%。
截至1月30日,据大宗原材料网站亿览网披露,钼精矿价格重回2005年10月5450元的高点。自2015年11月至今,国内钼精矿价格已上涨6.78倍。
钼的应用
金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的应用。
在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。
金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。
在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。
钼的化合物在农业肥料中也有广泛的用途。
钼资源储量分布及产量情况
钼在地壳中的平均含量约为0.00011%,已发现的钼矿约有20种,其中具工业价值的是辉钼矿,其次为钨相钙矿、铁铂矿、彩钼铅矿、铂铜矿等。根据美国地质调查2015年发布数据,钼资源储量约为1100万吨,探明储量约为1940万吨。
钼在我国储量居世界前列,陕西省华县金堆镇、辽宁葫芦岛、吉林、山西、河南、福建、广东、湖南、四川、江西、甘肃、内蒙等省均有钼矿,且储量大,开发条件好,产量在全国占有重要。具有工业价值的钼矿物主要是,约有99%的钼矿是以辉钼矿(状态开采出来的。我国钼精矿主要对俄罗斯、日本以及西方国家出口。
数据来源:野数据
我国2022年季度钼的产量为25855吨,环比减少了2%,但同比增加了6%;第二季度产量为28621.5吨,环比增加了4%,同比增加了14%。
数据来源:IMOA、中商产业研究院整理
展望后市
华泰券认为,2023-2025年钼市或延续短缺之势,存在继续推升钼价的可能性。
从供给端来看,2023-2025年供应较2021年新增或不超过1.5万吨。
2017-2021年钼产量较为平稳,保持在26万吨左右水平,2021年产量26.37万吨。中国为钼大供应国,2021年供应占比38%,另外北美与南美占比22%/31%。2022年受到海外减产、钼品位下降等影响,预计钼产量24.68万吨。
2023-2025年海内外钼矿确定新增产能较少,其中国内增量主要由大黑山钼矿及季德钼矿贡献,预计较2021年新增产量1.1万吨;海外钼矿多为铜伴生矿,新增产能被铜矿减产计划、钼入选品位下降抵消,预计较2021年新增产量0.1万吨。预计2023-2025年钼产量26.77/27.37/27.57万吨,较2021年新增不超过1.5万吨。
从需求端来看,2023-2025年需求或小幅增长,市场或延续供应短缺之势。
2015-2021年钼消费量小幅增长,2016-2021年6年CAGR3.1%,2021年达27.72万吨。中国为大钼消费国,2021年消费占比40%。2021年79%的钼应用于钢铁领域,13%/8%应用于化学品/金属及合金领域。
随着下游不锈钢、工程钢、工具钢需求增长,预计2022-2025年钼消费量28.28、29.18、30.01、31.00万吨,4年CAGR3.1%。2022-2025年钼供需两端皆未出现明显变化,市场或延续短缺状态,预计2023-2025年存在供应缺口2.41、2.64、3.43万吨。
为了钼精矿质量,有时需要进一步分离钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物,如使用硫化钠、硫氢化钠、氰化物或铁氰化物抑制铜和杂质含量。钼精矿冶炼主要采用以下几种方法:
氧化焙烧:将辉钼矿进行焙烧得到钼焙砂,然后通过升华法或湿法制得三氧化钼,用氨浸出时生成钼酸铵进入溶液,与不溶物加以分离。溶液经浓缩结晶得到钼酸铵晶体,或加酸酸化生成钼酸沉淀,从而与可溶性杂质分离。二者经煅烧后都生成纯净的三氧化钼,然后用氢还原法生产金属钼。根据焙烧设备或添加组分的不同,可将该方法分为回转窑焙烧工艺、反射炉焙烧工艺、多膛炉焙烧工艺、流化床焙烧工艺、闪速炉焙烧工艺。该方法会产生大量的烟气,污染环境,钼回收率较低,伴生的稀有元素铼几乎随着烟气跑掉,不适合处理低品位矿石和复杂矿。
硝酸浸出法:在高压釜内使MOS2氧化为可溶性钼酸盐,该方法主要是消耗廉价的氧化剂-空气或纯氧。该方法需要高温高压,对反应设备要求高,反应条件,生产技术难度大,浸出过程的工艺条件也较难控制,生产过程中也存在一定的隐患,目前国内已暂停使用该方法。
次氯酸钠浸出法:主要用于处理低品味中矿、尾矿的浸出。在氧化浸出过程中,次氯酸钠本身也会缓慢分解析出氧,其他一些金属硫化物也会被次氯酸钠氧化,这些金属的离子货氢氧化物又会与钼酸根生产钼酸盐沉淀,促进溶液的钼又返回到渣中。该方法反应条件温和,生产易于控制,对设备要求不高,但原料次氯酸钠消耗量大而造成生产成本过高。
电氧化浸出法:是由次氯酸钠法改进而来,该方法是将已经浆化的辉钼矿物料加入到装有氯化钠溶液的电解槽中,在电氧化过程中,阳产物Cl2又与水反应,生产次氯酸根,次氯酸根再氧化矿物中的硫化钼,使钼以钼酸根形态进入溶液中。该方法继承了次氯酸钠浸出率高、反应条件温和、的特点,并且能够较为方便的控制、调节反应的方向、限度、速率。
目前也出现了一些新方法,如辉钼矿精矿不经氧化焙烧,直接用氧压煮法或细菌浸出法提取纯三氧化钼。对低品位氧化矿用硫酸浸出,从溶液中用离子交换法或萃取法提取纯三氧化钼。
废钼回收的主要来源与分类
废钼的回收来源多样,主要包括工业生产废料、报废设备和消费后废品三大类。工业废料如钼合金切削屑、轧制废料和废钼电极,通常纯度较高,回收价值大;报废设备中的耐热部件、航空发动机叶片等含钼部件需经过拆解和分选;消费后废品如废旧电子元件(如半导体散热基板)和废弃化工催化剂则需化学提取。根据钼含量和杂质水平,废钼可分为高品位(Mo>90%)和低品位(Mo<50%),不同类别对应不同的回收工艺和定价标准。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁 钼箔片后再用于炼钢.低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右.不锈钢中加入钼,能改善钢的耐腐蚀性.在铸铁中加入钼,能提高铁的强度和耐磨性能.含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件.金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用.氧化钼和钼酸盐是化学和石油工业中的优良催化剂.二硫化钼是一种重要的润滑剂,用于航天和机械工业部门.除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂.钼是植物所的微量元素之一,在农业上用作微量元素化肥. 纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温 钼坩埚烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造.合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存.动物和鱼类与植物一样,同样需要钼. 钼在其它合金领域及化工领域的应用也不断扩大.例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域.由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件. 钼在薄膜太阳能及其他镀膜行业中,作为不同膜面的衬底也被广泛的应用.
钼
一、金属钼的性质与用途
钼的性质:银白金属,硬而坚韧,是难熔金属元素之一,在元素周期表中为VI B 族元素,原子序数42,原子量95.94,密度10.2 克/厘米3,熔点2610℃,沸点5560℃。化合价+2、+4 和+6,稳定价为+6。电离能7.099 电子伏特。在常温下不受空气的侵蚀。跟盐酸或氢氟酸不起反应。钼从来不以天然元素状态出现,而总是和其它元素结合在一起。钼是一种亲硫元素,所以辉钼矿(MoS 2 )是钼的主要赋存状态,其次是钼与钨、铜、钒、铼、铌等元素共生的氧化物矿。目前已知的钼矿物大约有20 多种,但其中具有工业应用价值的四种:即辉钼矿(MoS 2 )、钼酸钙矿(CaMoO 4 )、钼华[Fe 2 (MoO 4 ) 3 ·71/2H
2 O]和钼酸铅矿(PbMoO 4 ).除辉钼矿为原生钼矿物外,其他的都为次生钼矿物或伴生(共生)钼矿物。在常温下钼在空气或水中都是稳定的,但当温度达到400℃时开始发生轻微的氧化,当达到600℃后则发生剧烈的氧化而生成MoO 3 。盐酸、氢氟酸、稀硝酸及碱溶液对钼均不起作用。钼可溶于硝酸、王水或热硫酸溶液中。在很高的温度下钼于氢也不相互反应,但在1500℃与氮发生反应形成钼的氮化物。在1100 ~ 1200℃以上与碳、一氧化碳和碳氢化合物反应生成碳化物如MoSi 2 ,此MoSi 2 即使在1500 ~ 1700℃的氧化气氛中仍是相当稳定的,不会被氧化分解。
钼产品种类
钼以多种形态进行商品交易,包括钼精矿、钼炉料、钼化工产品及钼金属产品等多层次、多种类的产品,其中钼精矿、焙烧钼精矿及钼铁是市场交易活跃的品种,而钼废碎料亦有相当活跃的市场。
钼市场一般按照产品类型的不同,可分为钼精矿产品市场、钼炉料产品市场、钼化工产品市场和钼金属产品市场四个层次。
A.钼精矿产品
产量领先的钼精矿生产商包括美洲的菲尔普斯道奇公司、智利国营铜公司、肯尼考特公司以及金钼股份和洛阳钼业。
B.钼炉料产品
钼炉料主要用作生产合金钢和不锈钢的添加剂,大约有两成种类的不锈钢中含有钼的成分,而不锈钢产量的约10%是含钼不锈钢,其中含钼量约为 2-3%。含钼不锈钢具有抗腐蚀的特性,大多被用于中度腐蚀性环境,例如建筑的外表等。
主要的钼炉料厂商包括菲尔普斯道奇公司、莫利迈特公司、肯尼考特公司以及金钼股份和洛阳钼业。
C.钼化工产品
钼化工产品是钼的另一重要消费市场。钼化工产品中主要的品种为钼催化剂,就石油冶炼行业来说,钼催化剂可以被广泛地应用于煤油、汽油、循环油、脱沥青油、柴油提炼方面。钼化工产品的其他应用方向包括润滑剂、油漆、以及其他抗腐蚀性的外层涂料和着剂等。
D.钼金属产品
钼金属及钼基合金由于其良好的导电性、高温性能以及耐腐蚀性,被广泛地应用于灯泡制造、电子管和集成电路等电子工业、模具制造、高温元件、航空航天工业以及核工业等领域。
二、钼产业链:
钼的应用:钼主要用于冶金工业,其用量约占各领域总用量的84. 0%左右。合金钢、不锈钢、工具钢及铸铁是钼的主要应用领域,其生产量决定着钼的需求,钼在冶金工业的应用比例大致分配如下:合金钢44. 0%,耐蚀钢10% ,合金铸铁6. 0%,钢和特种合金3. 0% ,金属钼6. 0% ,化合物(硬质合金MoC等)及其他为10% ,其余主要用于低合金高强钢的生产。钼在上述钢铁中的作用如下:
世界钼资源的分布情况
世界钼矿资源世界上静态的钼储量估计约5500万吨。按1989年约消费75000吨的水平计算,消费近50年。钼储量的地区分布为:北美、南美的钼储量占钼的静态总储量的80%以上,占西方国家总储量的98%以上。美国、加拿大和智利的总储量4300万吨,占静态总储量78%以上。中国的钼精矿产量居世界第三位。钼资源集中在北美和南美,但是对可以预见的未来来说,重要的斑岩矿化带地区的钼足以满足钼的提供。世界钼资源集中太平洋盆地东侧的边缘,即从阿拉斯加和不列颠哥伦比亚经过美国和墨西哥到智利的安地斯。
三、我国钼资源储量及分布特点
虽然我国国土与美国地质调查的数据有差别,我国的数据显示我国钼资源列第二,美国的数据显示列,但可以肯定的是,我国的钼矿基础储量在不断增长,从2002年的330.20万吨上升至2009年440.80万吨,储量增长33.5%。
我国已探明钼资源储量占世界的35.4%,居世界,世界经济一体化正在促使国内钼业重新“洗牌”。钼业大国美国、智利的钼资源储量有限,产量逐年减少。国内河南、陕西、东北三大钼资源基地中,陕西、东北两大基地都不同程度在存在资源衰减,产量减少。我国的钼矿储量分布则呈现三足鼎立特点
我国钼探明储量的矿区有242处,分布于28 个省(区、市)。我国的钼矿分布类