青岛多钱废钼回收厂家在哪
废钼回收的社会效益与行业挑战
该行业的社会效益远超经济价值:一方面缓解资源短缺,保障战略金属供应链安全;另一方面创造大量就业,如废料分拣、技术研发等岗位。但挑战亦存:小作坊式回收导致环境污染,需加强监管;高端应用(如核工业钼材)对回收技术要求极高,国内企业仍依赖进口设备。推动产学研合作(如共建钼再生实验室)和行业标准统一,将是破局关键。
在生活中,有时需要将坚硬的金属切开,然而这些金属的硬度让我们望而却步。
有这么一种神奇的金属元素,它就是钼。
金属钼
利用它制作的钼丝能够轻松将钢板切开,你很难想象它的工作原理!
神奇的金属钼
虽然大家可能对钼这种金属元素很陌生,但人体当中都或多或少含有微量的钼元素,其是人体不可缺少的存在。
钼在人体当中主要对人的新陈代谢起推动作用,一旦缺乏钼元素,婴儿很有可能出现生长迟滞的情况,甚至是亡。
成年人则会出现过高的尿酸、嘌呤等情况,危及人类的健康。
高尿酸的六大危害
如果钼元素过量又会对新陈代谢造成障碍,使尿道、肾脏部位出现结石。
尿道与肾结石
既然钼元素对人们如此重要,那么人体中的钼究竟从何而来呢?
我们平时吃的一些食物中,就含有微量的钼元素,这些钼元素能够满足人体所需。
比如,番茄和各类谷物的含钼量比较高,大部分蔬菜都含有钼元素。
要是某个人检查出身体当中缺乏钼元素,那就要在饮食方面注意一下了。
作为自然金属的钼元素,它本身的质也很神奇。
自然界的钼元素
钼元素在自然条件下,会形成一种名为辉钼矿的矿物质,经过一定的提炼加工,就可以得到纯金属钼。
辉钼矿
提炼出的金属钼呈现灰,属于立体方块状的金属结构。
别看它长得像石墨,但是它的熔点和沸点要比石墨高上不少。
金属钼的熔点高达2600摄氏度,沸点约为4600摄氏度,密度奇高且韧十足,常用于其他金属的制作当中。
如果在钢铁工业当中,加入适量的钼元素,可以提升钢材的坚硬程度和耐腐蚀,并提高钢材的熔点。
在航空航天领域当中,钼元素掺杂的复合材质,是建造耐高温部件的重要原材料。
这些材料皆需耐高温
科学研究表明,含钼量超过18%的镍基超合金,能够耐得住3000摄氏度以上的高温,实用。
因此,钼元素也被运用到各种电子机械当中,成为一层坚硬的保护屏障。
钼金属不仅坚硬,而且表层的摩擦系数小,光滑,含有钼元素的二硫化钼也是重要的润滑剂。
除了各种高端领域,钼元素也被运用到肥料当中,使各种植物能够正常生长。
科学界有传,钼元素很有可能在相关领域当替代石墨烯。
石墨烯结构
石墨烯由于其的分子结构,具有很强的稳定,能够被运用到各种领域,尤其是新能源和晶体管等高端领域当中,石墨烯有着重要。
然而,相关研究表明,它相比石墨烯,质更加。
加州纳米技术研究院此前用辉钼和二硫化钼制作出了一种新型芯片,这种芯片比普通芯片更小、更薄,并且延展和成本要比石墨烯为原料芯片更。
芯片的内部结构
只可惜,如今钼元素为原料的芯片技术要求太高,无法用于批量生产,相信日后人类的技术进步,能够从根源上解决这个问题。
无独有偶,瑞士联邦理工学院洛桑分校的科学家也利用钼元素制作出了一种新型芯片。
科学家研究其质的时候发现,钼元素原料的分子结构是二维的,所以它制作出的芯片薄。
再加上延展等特点,使得钼元素芯片能够植入到人体当中。
科学家表示,含有钼元素的辉钼是优秀的半导体材料,在芯片、二管等相关领域的制作中,有着无法估量的前景。
辉钼矿
此外,钼元素制作的钼丝,被广泛运用到切割领域,它的切割方式,对超乎大家的想象。
钼丝的切割方式
我们生活中常见的切割方式是暴力破坏材质的物质结构,达到分离的目的,然而钢铁的材质,常用的切割方式肯定不起效,这个时候就要用到线割。
利用钼丝等工具制作的切割装置被称为线割器,它的结构很简单,机器有一个凹槽,在两端由一条钼丝连接,大部分钢铁通过钼丝,被轻松一分为二。
如此神奇的切割方式,它的工作原理要紧之处在于这根钼丝。
钼丝
因为钼丝上是通了高压电流的,带有电流的钼丝与钢铁接触,能够瞬间产生高温,将接触点融化,达到切割的目的。
当然这样的切割方式需要丝线拥有高的熔点,而钼丝恰好能够满足,是线割的主要原材料。
根据丝线的材质不同,线割的速度存在差异。
采用高熔点的铜、铁等原材料的丝线,属于低配版的线割机,本身的熔点并不是很高,能够承受的电流弱,速度自然就低,并且耐磨差,用不了多久就会出现损坏等情况。
线割机结构
而钼丝则是高配版的线割机,本身材质稳定,只要电流,高温很容易就将钢铁给切割开来,的实用。
线割机的来源
这么实用的线割机,又是谁发明的呢?
上个世纪中期,苏联的拉扎联科夫妇发现,金属在受到放电的火花时,会被腐蚀和氧化。
他们立刻反应过来,既然金属拥有如此质,为什么不生产一个放电的火花装置,来解决切割金属的难题呢?
电火花点火装置
于是花了几年时间,研发了电火花加工的方法,这是线割机的雏形,人们经过不断地改良,终于在1960年,出现了台线割机。
然而,这样的切割方法并不受到欧美人的,于是就转卖到我国。
因此,我国是世界上个将线割机用于工业生产的国家。
一用吓一跳,没想到这种切割机如此好用,解决了工业生产中的许多难题。
经过我国科学家的多次改良,线割机的丝线也不断更替,自从钼元素的特被发现后,钼丝便成为线割机的重要部件,充分发挥了线割机的优势。
如今,欧家也在使用线割机进行各类金属切割操作,我国的线割机发展水平水涨船高,实现了智能化操作。
工作中的线割机
我国较为高端的线割机主要采用微型计算机控制,对切割对象进行自动化、化操作,属于世界一流切割技术。
了解完钼丝制作的线割机操作后,相信大家对神奇的钼元素又有了更多的了解,那么它神奇的质还有哪些呢?
钼元素的价值
钼可以用于物制作当中,比如,钼酸铵就可以补充人体所需的钼元素,适量使用可以加强孩童的健康发育。
钼酸铵剂
利用钼制作的合金优点很多,被广泛用于各种领域。
只可惜,钼在地球的储量并不多可,开采量约为800万吨。
如何将为数不多的钼利用起来,是人类以后要思考的问题。
钼为人体及动植物的微量元素。
为银白金属,硬而坚韧。
人体各种组织都含钼,体内总量为9mg,肝、肾中含量高。
目录1基本资料2基本介绍2.1 发现2.2 视力2.3 危害3主要成分4产地分布5开发利用5.1 用途5.2 用5.3 使用5.4 钼合金6危害6.1 钼缺乏症6.2 钼过量6.3 钼污染6.4 对环境影响7代表地方7.1 钼业之都7.2 金寨钼矿7.3 温泉钼矿1基本资料拼音:[mù]部首:钅笔画:10五笔86:QHG五笔98:QHG仓颉:OPBU郑码:PLVV笔顺:撇横横横竖提竖横折钩横横横四角号码:86700Unicode:CJK统一汉字:U+94BC 基本字义:钼(钼)mù一种金属元素。
可用来生产特种钢,是电子工业的重要材料。
元素名称:钼(mù)CAS号:7439-98-7[1]安瓿中的钼杆元素符号:Mo钼元素英文名称:Molybdenum元素类型:金属元素原子体积:(立方厘米/摩尔) 9.4元素在太阳中的含量:(ppm) 0.009元素在海水中的含量:(ppm) 0.01地壳中含量:(ppm) 1.5相对原子质量:96原子序数:42质子数:42中子数:54所属周期:5所属族数:ⅥB电子层排布:2-8-18-13-1电子层:K-L-M-N-O外围电子层排布:4d5 5s1氧化态:Main Mo+6 ,Other Mo-2,Mo0,Mo+1,Mo+2,Mo+3,Mo+4,Mo+5 电离能(kJ /mol)M - M+ 685M+ - M2+ 1558M2+ - M3+ 2621M3+ - M4+ 4480M4+ - M5+ 5900M5+ - M6+ 6560M6+ - M7+ 12230M7+ - M8+ 14800M8+ - M9+ 16800M9+ - M10+ 19700晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。
晶胞参数:a = 314.7 pmb = 314.7 pmc = 314.7 pmα = 90°β = 90°γ = 90°莫氏硬度:5.5声音在其中的传播速率:5400m/s2基本介绍密度10.2克/立方厘米。
熔点2610℃。
沸点5560℃。
化合价+2、+4和+6,稳定价为+6。
钼是一种过渡钼精粉元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。
在氧化的形式下,钼很可能是处于+6价状态。
虽然在电子转移期间它也很可能首先还原为+5价状态。
但是在还原后的酶中也曾发现过钼的其他氧化状态。
钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。
发现1782年,瑞典的埃尔姆,用亚麻子油调过的木炭和钼酸混合物密闭灼烧,而得到钼。
1953年确知钼为人体及动植物的微量元素。
主要矿物是辉钼矿(MoS2)。
天然辉钼矿MoS2是一种软的黑矿物,外型和石墨相似。
18世纪末以前,欧洲市场上两者都以“molybdenite”名称出售。
1779年,舍勒指出石墨与molybdenite(辉钼矿)是两种不同的物质。
他发现硝酸对石墨没有影响,而与辉钼矿反应,获得一种白垩状的白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。
他认为这种白粉末是一种金属氧化物,用木炭混合后强热,没有获得金属,但与硫共热后却得到原来的辉钼矿。
1782年,瑞典一家矿场主埃尔摩从辉钼矿中分离出金属,命名为molybdenum,元素符号定为Mo。
我们译成钼。
它得到贝齐里乌斯等人的承认。
钼-99是钼的放射性同位素之一,他在医院里用于制备锝-99。
锝-99是一种放射性同位素,病人服用后可用于内脏器官造影。
用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中,当钼-99衰变时生成锝-99,在需要时可把锝-99从容器中取出发给病人。
钼是钢与合金中的重要元素,常用的含钼炉料有金属钼、钼铁,有时还可以使用氧化钼精矿来直接还原冶炼含钼钢种。
钼在地壳中的自然储量为1900万吨,可开采储量860万吨。
[1] 视力钼是组成眼睛虹膜的重要成分,虹膜可调节瞳孔大小,视物清楚,钼不足时,影响胰岛素调节功能,造成眼球晶状体房水渗透压上升,屈光度增加而导致近视。
大豆、扁豆、萝卜缨中含钼较高,此外还有糙米、牛肉、蘑菇、葡萄和蔬菜等。
[2]危害钼对人体生命健康危害大,它能够使体内能量代谢过程出现障碍,心肌缺氧而灶性坏死,易发肾结石和尿道结石,增大缺铁性贫血患病几率,引发龋齿,钼是食管癌的罪魁祸首,它还会导致痛风样综合征,关节痛及畸形、肾脏受损,生长发育迟缓、体重下降、毛发脱落、动脉硬化、结缔组织变性及皮肤病等生命健康隐患。
[3] 3主要成分 钼的性质钼位于门捷列夫周期表第五周期、第六副族,为一过渡性元素,钼原子序数42,原子量95.94,原子中电子排布为:ls2s2p3s3p3d4s4p4d5s 。
由于价电子层轨道呈半充满状态,钼介于亲石元素(8电子离子构型)和亲铜元素(18电子离子构型)之间,表现典型过渡状态.V . W.戈尔德斯密特在元素的地球化学分类里将它称亲铁元素。
[4]自然界里,钼有七个稳定的天然同位素,它们的核子数及其在天然混合物中所占比例如表1所列。
表1 钼的同位素及分配 同位数名称92Mo 94Mo95Mo96Mo97Mo98Mo100Mo∑各占比例(%)原子量15.8491.9063 9.0493.9047 15.7294.90584 16.5395.9046 9.4696.9058 23.7897.9055 9.6399.9076 100.0095.94 另据文献记载,已发现第八种天然同位素的存在。
此外,还发现钼有十一种人造放射性同位素,因资料数据不详,此不赘述。
钼为银白金属,钼原子半径为0.14nm 原子体积为235.5px/mol ,配位数为8,晶体为Az 型体心立方晶系,空间群为Oh (lm3m ),至今还没发现它有异构转变.常温下钼的晶格参数在0.31467~0.31475nm 之间,随杂质含量而变化。
钼熔点很高,在自然界单质中名列第六,被称作难熔金属,见表2(摘自《理化手册; 60th ) 钼的密度为10.23g/cm ,约为钨的一半(钨密度19.36g/cm )。
钼的热膨胀系数很低20~100℃时为4.9×10/℃;钼的热传导率较高,为142.35w/(m·k) 钼电阻率较低:0℃时为5.17×10Ω·cm ;800℃时为24.6×10Ω·cm ;2400℃时为72×10Ω·cm 。
钼属顺磁体,99.99%纯度的钼在25℃时比磁化系数为0.93×10cm/g 。
钼的比热在25℃时为242. 8J/(kg·k )。
钼的硬度较大,摩氏硬度为5~5.5。
钼在沸点的蒸发热为594kJ/mol ;熔化热为27.6 ±2.9kJ/mol ;在25℃时的升华热为659kJ/mol 。
表2 难熔物及熔、沸点 物质碳(C )钨(W )铼(Re ) 锇(Os )钽(Ta )钼(Mo )熔点(℃)沸点(℃) 3650~36974827 3410±105660 31805627 30455027±100 29965425±100 2622±105560钼的原子半径、离子半径与钨、铼的很接近。
原子半径(nm ) 4离子半径(nm ) 6离子半径(nm ) 钼钨铼0.1390.1400.1380.0680.0680.0650.065钼原子的电子排列体现了典型过渡元素的性质:次外层的五个4d 规道、外层的一个5s 规道上电子均呈半弃满状态。
这决定了钼的化学性质比较稳定。
常温或在不太高的温度下,钼在空气或水里是稳定的。
钼在空气中加热,颜开始由白()转暗灰;温升至520℃,钼开始被缓慢氧化,生成黄三氧化钼(MoO3温度降至常温后变为白);温升至600℃以上,钼迅速被氧化成MoO3。
钼在水节气中加热至700~800℃便开始生成MoO2,将它进一步加热,二氧化钼被继续氧化成三氧化钼。
钼在纯氧中可自燃,生成三氧化钼。
钼的氧化物已见于报道的很多,但不少是反应中间产物,而不是热力学稳定相态。
的只有九种,其结构与转化温度如表3。
表3 钼的氧化物氧化物生成温度范围(℃)结晶结构MoO2 菱形Mo4O11 <615 单斜系Mo4O11 615~800 正斜形Mo17O47 560Mo5O14 530Mo8O23 650~780Mo18O52 600~750 三斜系Mo9O26 750~780 单斜系MoO3 菱形另外,在生成MoO2前还有三种中间产物Mo2O3, moO和Mo3O,但都还未能制造出它们的纯产物。
钼的这一系列载化物中,除高价态的MoO3为酸酐外,其余氧化物均为碱性氧化物。
钼重要的氧化物是MoO3和MoO2。
MoO2分子量为127.94,含Mo74.99%。
纯MoO2呈暗灰、深褐粉末状。
25℃时,MoO2的生成热为550kJ/mol,密度为6.34~6.47g/cm。
MoO2呈金红石单斜结晶构造,单位晶体(晶胞)由两个MoO2分子组成,晶格参数为a= 0.5608nm, b= 0.4842nm,c=0.5517nm,d=11.975nm。
MoO2可溶于水,易溶于盐酸及硝酸,但不溶于氨水等碱液里。
在空气、水蒸气或氧气中继续加热MoO2,它将被进一步氧化,直至生成MoO3。
在真空中加热到1520~1720℃固态MoO2部升华而不分解出氧,但大部分MoO2分解成MoO3气体和固态Mo。
Jette. E. R(1935年)报道:MoO2在1980℃±50℃、0.1MPa(惰性气体)的条件下分解成钼和氧。
MoO2是钼氧化的产物。
moO3为淡绿或淡青的白粉末。
分子量为143.94,含Mo 66.65%。
25℃时,MoO3的生成热为668kJ/mol,密度为4. 692g/cm,熔点为795℃,沸点为1155℃.在低于熔点的温度已开始升华.在520~720℃时,升华呈气体的三氧化相为MoxO3x分子混合物,其中x=3~5,以x=3为主。
MoO3微溶于水而生成钼酸。
18℃,MoO3溶解度为1.066%,70℃时为 2.05%。
溶于水的三氧化钼与水按不同比例组成一系列同多酸,nMoO3·mH2O,其中n≥m。
青岛多钱废钼回收厂家在哪
钨钼材料的化学性质与氧化反应
各种含碳气体和固体碳(碳黑、煤、石墨)在1000~1200℃范围与钨和钼开始反应,生成碳化物(W3C、WC和Mo2C、MoC)1400~1600℃下,反应加剧。金属钨和钼中即使含有少量的碳化物杂质,也会使钨和钼脆化。钨和钼与氮气反应:钨在低于2000℃时,不与氮气反应,高于2000℃与氮气作用生成氮化物WN2。氮气在600℃以上缓慢地溶解于钼中,1200℃以上使钼发脆,高于1500℃钼与氮气反应生成氮化物。
钨和钼与氧和空气的反应:金属钨和钼常温下在空气中是稳定的,在约400℃开始氧化,在更高的温度下迅速氧化,生成三氧化钨和三氧化钼。钨和钼与氢气的反应: 直到熔点温度,氢气都不与钨和钼发生作用,使氢气成为钨和钼热处理过程中的重要介质。但在低于1200℃时,钨轻微吸收氢气。钨和钼与氯气的反应:金属钨加热至500℃时,直接与氯气发生作用,生成WCl6,温度更高时,WCl6分解成WCl5。碘蒸汽对钨不起作用。钨和钼与水蒸气的反应:钨和钼容易与水蒸气发生氧化反应,这种作用在600℃以上更为急剧。
钼与钨的性能与应用
钼和钨是周期系ⅥB族元素,地壳中的丰度均为1.2ppm。18世纪前,一直误将辉钼矿(MoS2)和石墨混同于铅。1782年瑞典耶尔姆制得金属钼。重要的矿物是辉钼矿,还有钼酸钙矿(CaMoO4 )、钼酸铁矿(Fe2(MoO4)2·nH2O)。钨的主要矿物是黑钨矿(Fe,Mn)WO4 ,白钨矿(CaWO4 )。钼与钨是我国的丰产元素,其储量占世界首位,辽宁杨家杖子的辉钼矿闻名于世。钨的储量占世界总量的50%以上,以江西省的大庾岭等地为。
金属的性质与用途
钼和钨是银白高熔点金属,在常温下很不活泼,与大多数非金属(F2除外)不作用。在高温下易与氧、硫、卤素、炭及氢反应。钼和钨不被普通酸所侵蚀或溶解,但浓硝酸或热浓硫酸可侵蚀钼。这两种金属都溶于王水或HF和HNO3的混合物。它们不被碱溶液侵蚀,但被熔融的碱性氧化剂迅速腐蚀,如KNO3。它们的主要反应见图9—4。
钼和钨大量用于制合金钢,可提高钢的耐高温强度,耐磨性、耐腐蚀性等。在机械工业中,钼钢和钨钢可做刀具、钻头等各种机器零件;钼和金属的合金在制造,以及导弹火箭等尖端领域里有重要。此外,钨丝用于制作灯丝,高温电炉的发热元件。金属钼易加工成丝、带、片、棒等,在电子工业中有广泛应用。钼丝用作支撑电灯泡中加热丝的小钩,电子管的栅等。
你是否见过这种灰的金属?它是如今能源与高端制造的核心材料之一,属于不可再生的重要战略资源。
这种灰的金属是能源与高端制造的核心材料之一
当然,其本身也是一种十分神奇的金属元素,叫做钼。
那么,钼元素到底是什么?它又有哪些应用呢?
大多数人对于钼元素并不熟悉,因为它在元素周期表当中的排名并不算靠前,日常生活中似乎也没见过它的身影。不过这家伙的出镜频率还是比较高的,只是相对低调一些罢了。
钼的化学符号为Mo,原子系数为42,在元素周期表当中属于第五周期第六副族,是一种难熔的稀有金属。根据资料来看,钼的熔点为2623摄氏度,沸点为4639摄氏度,这就意味着它还是比较“耐热”的。
钼元素在元素周期表当中的位置
此外,钼元素的膨胀系数小、强度大、电导率大、导热性能好、耐腐蚀,这些优势都使它在电气、化工、宇航等方面,都有着较好的发展前景。不过,它在地球上的含量并不多,可谓是用一点儿就少一点儿。
资料显示,钼在地球上的蕴藏量较少,其含量仅占地壳重量的0.001%,钼矿总储量约为1500万t,主要分布在美国、中国、智利、俄罗斯、加拿大等国。
钼元素的地球化学参数,它的蕴藏量是比较少的
值得一提的是,这种拥有多重优点的神奇元素,身世却有些坎坷。
在1778年被确认之前,钼元素总是被人们当成铅来对待,因为它常常出现于辉钼矿当中,而这种矿长的和铅实在是太像了。所以在瑞典化学家舍勒帮钼元素“正名”之前,钼元素一直籍籍无名,顶着别人的名字“活着”。
瑞典化学家舍勒发现钼元素之前,它总是被人们当成铅对待
人们重视钼,大多是因为它不但延展性强,热膨胀系数也低。若我们将其的密度与钨进行对比,就会发现它只有钨的1/2左右,但是延展性却明显更强,所以更容易被压成薄片或者细丝,用于切割加工。
热膨胀系数低,主要说的是它在高温之下,依旧能保持稳定的形态和尺寸,少会变形。不过,这个优点放在低温下就很尴尬了,会让它变得嘎嘣脆。
如今大部分工业切割当中,都会使用到钼,只不过它并不引人注目,因为这时的钼常常是以一根细细的金属丝模样出现的。
工业切割当中使用到的钼丝
那么,这么细的一根钼丝,为何能在切割领域“如鱼得水”,它真有这么锋利能直接切开钢板吗?
钼丝莫式硬度5.5的性质虽然很不错,但是用这么细一根拿来切钢板,似乎还是有些夸张了,毕竟钢板又不是“豆腐”,本身的强度摆在那的。
因此工业切割钢板并不单是靠钼丝,还有切割装置原理。因为这种线切割技术也被称之为电火花切割,它是在电火花穿孔和成形加工的基础上发展而来的,初的发现者是拉扎连科夫妇。
在发现电火花瞬时产生的高温能够让金属融化、腐蚀之后,他们便发明了使用电火花进行切割加工的方法,后来演化为了线切割机。
线切割机的主要结构示意图
一般来说,这一方法需要利用移动的金属丝来当“电丝”,然后让电丝和元件之间的脉冲产生电火花,而这个电火花的高温就能够让被切割物质融化了。所以如果大家观察线切割机工作,就会发现它一直滋滋啦啦的冒火花。
那么,发明者为何从众多金属元素当中,选择了钼元素呢?
这其实就与咱们上文中所说的钼元素的特性有关了。在线切割机进行切割的时候,往往会产生高温,而钼的耐高温性在此时就能发挥优势了。再加上这类切割机对于线的形态和稳定性也有着明确的要求,起码不能切着切着金属丝就变形了。
钼元素的物理特性,使得它在线切割当中发挥了优势
在这种情况下,热膨胀系数很低的钼就能地充当“切割线”,确保加工部件被切割出来是完整的,符合规格的。
要知道,线切割基本都是被运用在精加工领域的,若是使用其他容易变形的金属丝来替代钼丝,那么肯定会产生不少的“废件”。
所以,钼丝一直都是电火花加工当中理想的电丝,使用它可以来切割各种钢材和硬质合金,还能够加工一些对形状和精度要求高的复杂零件,放电加工的稳定性高。
钼丝是电火花加工当中理想的电丝
得益于上世纪与苏联之间短暂的“蜜月期”,我国也算是个将电火花线切割机用于工业生产的国家了。在这类切割机需求居高不下的情况下,钼元素的当然也就变得很高了。
此外,不起眼的钼丝还会被用在灯泡制造业中,比如钼元素和其他元素的合金,常常被用来当做高功率微波管和毫米波管中热离子阴的结构元件,能在1200摄氏度左右的温度当中工作。
资料显示据中国照明协会统计, 2001年,全国生产钼丝就已经达到31 .5亿m, 实际产量估计达到40亿m, 消耗将近800t钼条, 其数量十分可观。而其中线切割用钼丝产量,也超过了20亿m。
由于钼的性质,导致我国对它的需求很大,产量也十分可观
除了能够一路火花带闪电的切开钢板以外,钼元素的用途还有很多,可以说是让人“钼不暇接”。那么,它还被运用在哪些领域当中呢?
首先就是用在钢铁工业当中,一般来说它是以合金化元素的身份存在的,算是“添加剂”。当人们在钢铁生产中加入一定剂量的钼元素后,就能够提高钢的强度,使其在高温和韧性方面有更加的表现。
钼元素在钢铁工业当中的应用
其次就是运用在农业生产当中,这一点大多数人都不知道也无法理解,难道说咱们吃的粮食还需要金属元素参与?
还真是这样,因为钼其实是植物当中必不可少的微量元素之一,有着关键的作用。有时候,它的存在甚至能让农作物“起死回生”。
研究显示,钼能催化硝酸盐向盐转化,然后在固氮酶的作用下生成铵态氮,参与植物中碳、氮代谢等重要的生理过程。钼还能促进植物对磷的吸收和空气中氮的固定,提高其抗寒性能。
钼元素能够帮助植物提升固氮作用
比如以大豆为例,当其根瘤变长变少后,叶片也会出现斑点并随之萎缩。而这种症状,就是因为它体内缺少“钼元素”了。此时将钼元素按配比制成的化肥拿来,就能很快解决问题,帮助大豆重新焕发生机。
此外,钼元素对于人体来说也很重要,只不过它的含量比较少,所以大家鲜少注意到它。根据估算,体重为70千克的健康人体当中,钼的含量也不会超过9克,其广泛存在于肝、骨骼、肾脏之类的器官当中。
钼元素对于人体来说也很重要
人体中的钼元素可以有效地抑制胺类强致癌物的合成,还具备运载作用,帮助人体输送一些金属离子。此外,它还有保护心血管、预防龋齿的功能,总的来说算是比较全能的元素了。
如果大家察觉到缺乏钼元素,可以通过食用黄豆、玉米、黑米之类的粮食,进行补充。当然,补充也不可过量,具体还是要根据个人情况和医嘱而定。
如果需要补充钼元素,可以采取食补的方式
青岛多钱废钼回收厂家在哪
摘要:从铜含量为0.77%~1.32%之间的铜渣中回收金属,回收金属主要为铜;然而一些渣也含有0.4%左右的钼,有可能将熔融的铜渣变为一种新原料来开发新工艺,得到新产品。从这点来讲,使用焙烧-浸出工艺处理铜渣是为了回收渣中的钼,用氧化焙烧法将氧化铁转化为不溶性赤铁矿,而铜和钼转化为可溶态溶于酸溶液。因为钼与氧化铁类晶石相结合,在浸出过程中它的还原会受四氧化三铁成分影响,使用硫酸进行渣浸出,钼的回收率超过80%。因此,使用两段工艺,即氧化焙烧后酸浸对钼进行回收,得到的结果表明这种方法的可行性。
0前 言
当前,受经济、环境及金属高消费问题的影响,迫使人们开发更经济有效、从二次资源中回收有价金属的方法得到了推广。智利每年要产出含铜量为0.77%~1.32%、含钼0.4%及大量的铁和二氧化硅的铜渣超过350万t,因而,在循环利用金属萃取工艺上,铜渣就显示出了它的经济潜力[1]。
从铜渣中萃取金属有许多湿法冶金方面的建议,这包括直接从硫酸或氯化铁中浸出,也有将渣与硫酸、硫酸铵、硫酸铁焙烧或在还原的条件下酸浸这方面的报道。然而,的报道都是涉及铜和钴或镍还原方面,关于通过湿法冶金工艺从铜渣中回收钼的数据少有报道[4-8]。
因此,有人提议焙烧低品位的钼精矿与石灰或碳酸钠,将钼转化为钼酸盐,也有人研究将废催化剂与碳酸钠焙烧,还原可溶性钼酸盐[9-12]。因此,生产钼有效的方法是将钼精矿焙烧得到三氧化钼,随后对三氧化钼进行还原得到金属钼[12]。所以,本工作的重点是研究氧化物经过焙烧后酸浸,从铜渣中回收钼的可行性。
1从理论上讲
铜渣中的矿物学成分及所呈现的相取决于加
工矿物的类型、炉子的类型及冷却方法等几方面的因素。缓冷导致渣的组分有相当数量的结晶,形成大量的不同矿物相,冷却的速度越慢,矿物相增长越大;缓冷速度快,有可能产生非晶体渣,因而金属在渣中分布越均匀[14]。当铜渣是晶体时,主相通常是伴有硅酸盐的硅酸铁盐及金属氧化物,铜以氧化物或硫化物或两者的混合体存在。
在铜的回收过程中,比较典型的铜渣分析显示,钼分散在整个氧化铁相中,钼高度氧化,并与四氧化三铁的化学结构相结合,如图1所示。
在冶炼前,由于钼从硫化铜矿中浮选的效率低,所以钼出现在渣中。同时,也有报道说钼与属于2FeO·MoO2-Fe3O4系列的尖晶石结合,浸出率低[15]。
在熔融状态下,除了带入液体的一些铜及硫化铜以外,从化学性质上讲,渣是均质的,在急速冷却条件下,它仍保持均质状态。当渣缓慢冷却时,它不会过氧化,且至少可能形成两种固体相:硅酸亚铁和部分被氧化成的四氧化三铁,铜仍为硫化物;这种条件下通常通过浮选回收铜。然而,根据以下反应,铜、硫化铜及氧化铜在高度氧化焙烧条件下,温度在600~800 ℃时,能被转化。
Cu+1/2O2=CuO (1)
Cu2S+2O2=2CuO+SO2 (2)
Cu2O+2/3O2=2CuO (3)
在这些条件下,当温度达到800~1 100 ℃之间时,硅酸铁在有氧条件下分解,具体如下:
2FeO·SiO2+1/2O2=Fe2O3+SiO2 (4)
2FeO·SiO2+1/3O2=2/3Fe2O3+SiO2 (5)
根据以下反应,钼从它与氧化铁的尖晶石的组合物中分离出
2FeO·MoO2·Fe2O3+O2= 2Fe2O3+MoO3 (6)
图2实验室实验的结构图
因而,氧化焙烧会使铁硅酸盐分解,形成不溶于酸溶液的四氧化三铁和二氧化硅,这样在室温条件下,经过焙烧工序处理的产品就很容易通过酸浸进行处理,钼的还原效果就好,铜仍留在渣里面。
2实 验
缓冷和速冷却的系列冶炼铜渣的化学特性,如表1所示。
表1系列冶炼铜渣的化学性质* %
在一个典型的试验中,渣在实验室的管式Lindberg-Blue 炉0.5 cm厚的固定床上进行焙烧,条件如下:温度700 ℃,所用气体中混有90%的空气及10%的二氧化硫,物料粒度400目为100%,所得到的煅烧砂使用标准浸出测试法用如下条件在实验室中浸出:温度为18~20 ℃,硫酸为50 g/L,液固比为10∶1,物料粒度200目为100%,如图2所示浸出2 h。进行浸出测试以确定不经过煅烧步骤渣的溶解性,条件如下:温度为20 ℃,硫酸150 g/L,液固比为10∶1。
空气与二氧化硫混合是为了评估使用冶炼烟气促成四氧化三铁反应的可行性,正如以前报告中提到的计划那样,增加铜渣的商用价值[17]。
3结果与讨论
图3显示的是使用扫描电镜技术扫描到的缓冷渣的特性,微探针分析显示的是沉积的氧化物及硅酸盐的络合物,钼在这里形成了一个Fe-Mo-O的分离相,如1#、2#和4#相所示,络合物中铁的含量在52.03%~63.57%之间,钼含量在1.25%~6.35%之间。同时,这些相中二氧化硅的含量低,表明铁能在磁铁矿中呈现如FeO·MoO2-Fe3O4样的尖晶石结构,3#相显示的是玻璃状的铁硅酸盐型含钼量低的二氧化硅富集溶液。
图4是渣的扫描电镜分析,如图4a所示,可观察到铁分布在整个玻璃状的铁硅酸盐相中;图4b显示的是钼散布在渣中并与铁的分布路径紧邻的硅酸盐相。
铁的高萃取率表明铁硅酸盐的主要部分分解,这导致酸的消耗及溶液中胶态氧化硅增加,也增加了后期钼分离的难度。每吨渣所消耗的硫酸量在800~1 000 kg,溶液中的二氧化硅的富集量在10~15 g/L。
如图5所示,含不同成份磁铁矿的渣使用焙烧-浸出工艺,可观察到渣随着钼还原量的增加,四氧化三铁含量减少。
由于钼与氧化铁尖晶石结合在一起,酸浸不易分解,需要氧化成为钼的易溶态或氧化钼,这样才能在浸出过程中溶解,铁被氧化成为氧化铁,以便对钼进行选择性浸出。
在氧化过程中,氧化铁尖晶石转化为氧化铁,钼从铁尖晶石相中分离出,同时也被氧化成为它的高氧化态并反应生成热稳定的合成物,该合成物可以从氧化铁及硅酸盐合成物中不受限进行选择性浸出。
这里应当注意渣的熔点,这些合成物可以互溶,且由于氧化亚铁和四氧化三铁决定了铜渣的氧化态,可以得出钼的还原态为Mo4+。
因为渣中钼的浓度比较低,与以高的浓度并以Fe2+及Fe3+氧化物形态存在的氧化铁相比,很难经过分析实二氧化钼的存在。然而,有一点清楚,渣与四氧化三铁尖晶石晶化,形成二氧化钼固溶体,钼的浸出率低。
4结 论
铁和钼分布在整个玻璃状硅酸盐相,且在渣中钼的分布与铁的分布路径紧紧相邻,因此,钼主要与氧化铁尖晶石相结合。
由于氧化反应破坏了渣的结构,产生赤铁矿及方晶石,氧化铁及二氧化硅成为渣的主要成份,二氧化硅相中也应当有次要的氧化物成份出现,因而,在被氧化的渣中,硅酸盐及氧化铁就成为预期的两个主要的基本相。
人们普遍认为,渣氧化的结果是钼和铁被氧化成高氧化态,因而使用酸浸工艺就可以将钼从渣的氧化微粒中选择性浸出。
渣中的四氧化三铁显示,钼是嵌入在尖晶石固体相中,说明它在酸溶液中的溶解度低。然而,渣的溶解度测试结果显示,当渣中的四氧化三铁含量减少时,钼的萃取率提高,这对渣的焙烧转化同样有效。