衢州多钱废钼回收哪家好啊
实验室教育
一、实验目的
1.
了解实验室管理制度
2.
主要掌握化学品使用、危险废物处置和应急救援
二、实验室典型隐患及教育案例
1.
试剂瓶放在桌面边缘
2.
做完实验盖子不及时盖好拧紧
3.
废液桶与废弃物存放点无警戒标识
4.
典型事故、事例
8
·
12
天津滨海新区爆炸事故——高校实验室管理的分水岭;
2015
年
8
月
12
日,天津市滨海新区发生火灾爆炸事故造成
165
人遇难 、
8
人失踪,
798
人受伤 ,造成直接经济损失
68.66
亿元。瑞海公司集装箱内的硝化棉在高温等
因素的作用下自燃, 引起相邻集装箱内的硝酸铵等危险化学品发生爆炸。
8
月
14
日紧急《关于深入开展危险化学品和易燃易爆物品专
项整治的紧急通知》
三、一般
1.
应熟悉实验室环境: 水、 电阀门以及通道的位置。 熟悉各类灭火和
应急设备的位置和使用方法。
2.
开展实验时要密切关注实验进展情况, 不得擅自离岗,进行危险实验时至
少
2
人在场。 严禁将实验室内物品私自带出实验室。
3.
实验结束后, 一个离开实验室的人员检查并关闭整个实验室的
水、 电、 气、 门窗。
4.
进入实验室要做好必要的个人防护, 不得在实验室内穿露脚趾的鞋子。
5.
严禁穿着实验室防护服离开实验室, 如就餐或去办公室、休息室和卫生间
等。
6.
禁止在实验室工作区域进食、 饮水、 吸烟、 化妆和处理隐形眼镜。
7.
禁止在实验室储存食品和饮料。
8.
处理性实验材料和动物后, 以及离开实验室前都应洗手。
9.
实验室内用过的防护服不得和日常服装放在同一柜子内。
四、消防
1.实验室火灾隐患
1)
加热设备引起火灾
2)
违反操作规程引起火灾
不规范的蒸馏、 回流等操作
3)
易燃易爆危险品引起火灾
4)
化学废弃物易引起火灾
5)
用电不规范或电路老化引起火灾
6)
违规吸烟, 乱扔烟头引起火灾
2.
火灾初起的紧急处理
3.
消防器材使用方法
4.
火场自救与逃生常识
生命重要 !
五、化学品
1.
危险化学品是指具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、环
境具有危害的剧毒化学品和其他化学品。
2.
采购受公安机关管控, 应通过院系申请、 学校等相关部门审批, 由管理
人员登录“危险化学品治安管理信息系统”
进行网上备案,
获得公安机关审批
后, 统一采购。
3.
化学品保存的一般原则:保持整洁、
通风、
隔热、
,
远离热源、
火
源、 电源和水源, 避免阳光直射。
4.
危险品分类存放要求 :如还原剂、 有机物等不能与氧化剂、硫酸、 硝酸
混放;
5.
强酸不能与强氧化剂的盐类混放;
6.
遇酸可产生有害气体的盐类(如: 氰化钾等)不能与酸混放。
六、化学品使用规范
1.
进行实验之前应先阅读使用化学品的技术说明书,了解化学品特性、
影响因素与正确处理事故的方法,采取必要的防护措施。
2.
实验人员穿着适合的实验工作服,长衣长裤,不得穿短裤短裙以及露趾凉鞋。
3.
严格按实验规程进行操作,在能够达到实验目的和效果的前提下,尽量减少
品用量,或者用危险性低的品替代危险性高的品。
4.
不可直接接触品、品尝品味道、把鼻子凑到容器口嗅闻品的气味。
5.
使用剧毒化学品、 爆炸性物品或强挥发性、 刺激性、 恶臭化学品时, 应
在通风良好的条件下进行。
七、危险废物处置
:
1.
破损的玻璃仪器(试管、量筒、烧杯等)应专门存放,不得与实验垃圾混放。
2.
废试剂瓶倒尽残液后应使用纸箱包装存放。
3.
化学实验废液不得直接倒入下水道。液桶盛放不得超过大容量的
80%
。收
集废液后应盖紧盖子(含内盖),存放位置要阴凉并远离热源、 火源。
4.
运送实验废物时,
至少需两人同行,
并穿着实验服,
佩戴口罩和手套,
做
好防护。 配合管理人员检查并称重, 填写入库记录, 粘贴危险废物标签。
八、应急救援:
发生化学事故, 应立即报告老师, 并积采取措施进行应急救援, 然
后送医院治疗。
1.
化学烧灼伤
应立即脱去沾染化学品的衣物,迅速用大量清水长时间冲洗,避免扩大烧伤
面。处理时,应尽可能保持水疱皮的完整性,不要撕去受损的皮肤。
2.
化学
应迅速脱离低温环境和冰冻物体,用
40
℃左右温水将冰冻融化后将衣物脱
下或剪开,然后对部位进行复温,并尽快就医。
3.
吸入化学品中毒
果断措施切断毒源,并打开门、
窗,
降低毒物浓度。迅速将伤员救离现场,
搬至空气新鲜、 流通的地方,松开领口、 紧身衣服和腰带, 以利呼吸畅
通, 使毒物尽快排出。
.
上学期实验:
实验一 蛋白质浓度的测定(1)—— Folin-酚法
一、实验目的
1.
学
Folin-
酚试剂法测定蛋白质含量的原理及方法
2.
学绘制标准曲线
3.
掌握用标准曲线求待测物质含量的方法
二、实验原理
1921 年,Folin 首创,利用蛋白质分子中酪氨酸残基(酚基)还原酚试剂
(磷钨酸
-
磷钼酸)起蓝反应。
1951
年,
Lowry
对此法进行了改进,先在标本
中加碱性铜试剂,再与酚试剂反应,提高了灵敏度。
Folin-酚试剂在碱性条件下不稳定,其磷钼酸盐-磷钨酸盐易被酚类化合
物还原而呈蓝反应(钼蓝和钨蓝的混合物)。由于蛋白质中含有带酚羟基的酪
氨酸(Tyr) ,故有此显反应。该反应分两步进行,首先在碱性溶液中,蛋白质
分子中的肽键与碱性铜试剂中的 Cu2+作用生成紫红的蛋白质- Cu2+复合物,然
后,蛋白质- Cu2+复合物中所含的酪氨酸残基还原酚试剂中的磷钼酸和磷钨酸,
生成蓝的化合物。
在一定浓度范围内,蓝的深浅度与蛋白质浓度呈线性关系,故可根据预先
绘制的标准曲线求出未知样品中蛋白质的含量。
三、实验试剂及仪器
1. 实验试剂
(
1
) 待测样品
(
2
) 酪蛋白标准品
(
3
)
Folin-
酚试剂甲:
(
4
)
Folin-
酚试剂乙:
(
5
)酪蛋白标准溶液母液(
500
μ
g/ml
):
2. 实验仪器
(
1)722N 型可见分光光度计
(
2)试管 7 支、试管架
(
3)移液枪
(
4)水浴锅
四、实验步骤
1
、标准曲线的绘制:
取六支干净试管编号,按下表加入试剂:(单位毫升)
2.
待测样品:
准确吸取待测样液
0.5ml
于
7
号试管内,加入蒸馏水
0.5ml
、
Folin-
试剂甲
5.0ml
、
Folin-
试剂乙
0.5ml
,重复上步操作,测样品
A500
。
五
、
实验结果与分析
1.
标准曲线绘制
C
X
:为根据待测样品的吸光值查标准曲线所得的蛋白质浓度
编号
(
标准溶液
浓度
)
酪蛋白标准
溶液母液
(500
μ
g/ml)
ml
去离子水
(ml)
Folin-
酚甲
(ml)
Folin-
酚乙
(ml)
A500
1
0.0
1.0
5.0
0.5
0.000
2
0.2
0.8
5.0
0.5
X.XXX
3
0.4
0.6
5.0
0.5
X.XXX
4
0.6
0.4
5.0
0.5
X.XXX
5
0.8
0.2
5.0
0.5
X.XXX
6
1.0
0.0
5.0
0.5
X.XXX
7(?)
待测样液
0.5ml
0.5
5.0
0.5
X.XXX2.
计算待测样品浓度
根据图中数值,计算出待测样品的浓度。
六、实验注意事项
(一)实验操作注意事项
1. Folin-
酚乙试剂在碱性条件下不稳定,当
Folin-
酚试剂加到碱性的铜
-
蛋白质溶
液中后,立即混匀(加一管混匀一管),使还原反应发生在磷钼酸
-
磷钨
酸试剂被破坏之前
;
2.
尽量减少各管之间的反应时间误差;
3.
一定要注意实验的时间,因为溶液的光密度值是随着时间在不断增大的,如
果时间超过了
30
分钟,则测得的光密度值就不准确了;
4.
在使用分光光度计时,拿比皿是要拿它的毛面,不可以用手接触它的光滑
面,自己手上的油污是测量值不准确;
5.
在擦拭比皿时,要顺着一个方向擦;
6.
在比皿中装入的液体量大约要是比皿体积的三分之二
.
(二)标准曲线制作注意事项
1.
作一条标准曲线至少要
5
个点
2.
被测物与标准物应在相同条件下测定
3.
尽量使未经过线上的实验点均匀分布在曲线或直线两侧
4.
标准曲线中标准物浓度有一定的线性范围,应使标准曲线范围在被测物质浓
度的
1/2
~
2
倍之间,并使吸光度在
0.05
~
1.0
范围为宜
(三)移液枪使用注意事项
1.
量程选择:
35%-100%
范围内佳
2.
大体积→小体积
顺时针
;
小体积→大体积 逆时针
3.
将移液枪端垂直插入吸头,左右微微转动,上紧即可
4.
吸液
:
垂直吸液,枪头尖端需浸入液面
2-4mm
以下。慢吸慢放,控制好弹
簧的伸缩速度。吸液速度太快会产生反冲和气泡,导致移液体积不准确。
5.
放液
:
将吸嘴口贴到容器内壁并保持
10-40
°倾斜。平稳地把按钮压到一档,
停约一秒钟后压到二档,排出剩余液体。压住按钮,同时提起移液枪
;
松开
按钮。 按弹射器除去移液嘴。
6.
使用完毕
:
至大量程
,
让弹簧恢复原形,挂至移液枪架上。
七、思考题
1.
试述
Folin-
酚试剂法的优点?
2.
应用本方法有哪些干扰作用?为什么?应如何注意?
3.
什么叫标准曲线? 绘制标准曲线有何实用意义?
实验二 蛋白质浓度测定(2)-紫外线(UV)吸收法
一、实验目的
1.
学紫外线(
UV
)吸收法测定蛋白质含量的原理
2.
了解紫外分光光度计的构造原理
3.
掌握它的使用方法。
二、实验原理
由于蛋白质分子中酪氨酸和氨酸残基的苯环含有共轭双键,因此蛋白质具
有吸收紫外线的性质,吸收高峰在
280nm
波长处。在此波长范围内,蛋白质溶
液的光吸收值(
A280
)与其含量呈正比关系,可用作定量测定。
利用紫外线吸收法测定蛋白质含量的优点是迅速、简便、不消耗样品,低浓
度盐类不干扰测定。因此,在蛋白质和酶的生化制备中(是在柱层析分离中)
广泛应用。
此法的缺点是:(
1
)对于测定那些与标准蛋白质中酪氨酸和氨酸含量差
异较大的蛋白质,有一定的误差;(
2
)若样品中含有嘌呤、嘧啶等吸收紫外线的
物质,会出现较大的干扰。 不同的蛋白质和核酸的紫外线吸收是不相同的,即
使经过校正,测定结果也还存在一定的误差。但可作为初步定量的依据。
三、实验试剂及仪器
1. 实验试剂
(
1
)标准蛋白质溶液(
1mg/ml
)
(
2
)待测蛋白质溶液,浓度需稀释至
1mg/ml
附近。
2. 实验仪器
紫外分光光度计、微量移液器、枪头、试管和试管架等
四、实验步骤
1.
标准曲线法:
取
8
支试管,按下表加入试剂(单位
ml
),并进行操作,绘制标准曲线,
A280
值为纵坐标,蛋白质浓度为横坐标(蛋白质浓度为
mg/ml
)。
2.
取待测蛋白质溶液
2.0 ml
于
5
号试管中
,
加入蒸馏水
2.0 ml
,摇匀,按上述方
法测定
A280
,在标准曲线上查出待测蛋白质浓度。
五
、
实验结果与分析
1
. 原始数据
:
记录各管的
OD
值
2
. 绘制出标准曲线:要求规范作图
(
1
)用铅笔作图、
(
2
)标出横、纵坐标名称及单位
(
3
)标出日期、作者 、曲线名称
(
4
)曲线上体现出待测样品的
OD
值及浓度值。
3.
计算:蛋白质含量。
(
1
)要求: 写出公式、代入数据、写出结果。
(2
)根据标准曲线
R
2
值判断实验结果是否,分析可能造成实验误差
的原因有哪些?
六、实验注意事项
1.
比皿使用时注意不要沾污或将比皿的透光面磨损,应手持比皿的毛
面。
2.
待测液制备好后应尽快测量,避免有物质分解,影响测量结果。
3.
测得的吸光度
A
好控制在
0.2~0.8
之间,超过
1.0
时要做适当稀释。
4.
开关试样室盖时动作要轻缓。
5.
不要在仪器上方倾倒测试样品,以免样品污染仪器表面,损坏仪器。
6.
比皿在盛装样品前,应用所盛装样品冲洗两次,测量结束后比皿应用
蒸馏水清洗干净后倒置晾干。若比皿内有颜挂壁,可用无水乙醇浸泡
清洗。
七、思考题
1.
紫外吸收法与
Folin-
酚比法测定蛋白质含量相比,有何缺点及优点?
2.
若样品中含有核酸类杂质,应如何校正?
3.
分析实验误差产生的原因
4.
为什么吸光度
A
好控制在
0.2~0.8
之间?
实验三 血清蛋白醋酸纤维素薄膜电泳
一、实验目的
1.
了解电泳的一般原理
2.
掌握醋酸纤维素薄膜电泳操作技术
3.
掌握醋酸纤维薄膜电泳分离血清蛋白的方法
二、实验原理
血清中各种蛋白质的等电点不同,一般都低于
pH7.4
。它们在
pH8.6
的缓冲
液中均解离带负电荷,在电场中向正移动。
血清中含有清蛋白,
α
-
球蛋白、
β
-
球蛋白、
γ
-
球蛋白和各种脂蛋白等,各种蛋白质由于氨基酸组分、立体构
象、分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速
度也不同,因此可以将它们分离。
在相同碱性
PH
值缓冲体系中,
分子量小、
等电点低、带负荷电荷多的蛋白质颗粒在电场中迁移速度较快。
醋酸纤维素薄膜电泳是采用醋酸纤维素薄膜作为支持物的一种电泳方法。
醋酸纤维素是纤维素的羟基乙酰化所形成的纤维素醋酸酯,该膜具有均一的泡
沫状结构,厚度约为
120
μ
m
,通透性好,对分子移动阻力少,是一种良好的
电泳支持物。具有微量、、简便、区带清晰、灵敏度高、便于摄影和保存
等优点。常用于科学实验、生化产品分析和临床化验,如血浆蛋白、血红蛋白、
球蛋白、脂蛋白、糖蛋白、甲胎蛋白、同工酶等的分离鉴定。
三、实验试剂及仪器
1.
实验试剂、材料
巴比妥
-
巴比妥钠缓冲溶液,染液,漂洗液,血清
:
医院采血
2.
实验仪器
常压电泳仪、水平电泳槽、点样器、滤纸、醋酸纤维素薄膜、培养皿、镊子等
四、实验步骤
1.
准备和点样 :
将醋酸纤维素薄膜(
2cm
×
8cm
)浸入缓冲溶液中,待浸透用镊子轻轻取出,夹在两层粗滤纸内吸干多余的缓冲液,然后将无光泽面朝上平放于滤纸
上。点样器在血清上蘸一下,再将点样器轻印在加样线上,使血清成一条状点
于醋酸纤维素薄膜一端
1.5
厘米处,将薄膜无光泽面朝下,点样端为阴,进
行电泳。
2.
电泳条件:
电压
80-90V
,恒压,
1h
,电流与薄膜多少相关。
3.
染、漂洗:
电泳完毕,将薄膜浸于染液中
10
分钟,取出,置漂洗液中漂洗
2-3
次至
背景无,再浸于蒸馏水中观察。
五
、
实验结果与分析
以醋酸纤维素薄膜为支持物,正常人血清在
PH8.6
的缓冲体系中电泳
1h
左
右,染后可显示
5
条区带。清蛋白泳动快,其余依次为
α
1-
、
α
2-
、
β
-
及
γ
-
球蛋白,如下图所示。
对照各自电泳结果,分析各将条带是否成功分离,存在的问题及原因有哪些?
六、实验注意事项
1 .
薄膜的浸润与选膜是电泳成败的关键之一。
2.
应将薄膜表面多余的缓冲液用滤纸吸去,吸水量以不干不湿为宜。
3.
分清薄膜的点样面,点样应点在薄膜的毛面上。
4.
点样要细窄、均匀、集中;点样量要适量,不宜过多或过少; 动作要轻、
稳,用力不能太大。
5.
注意薄膜放置的方向。电泳时应将薄膜的点样端置于电泳槽的负端,且
点样面向下。
6.
勿使点样处与电泳槽接触。
7.
应控制染时间。时间长,薄膜底不易脱去;时间太短,着不易区分,
或造成条带染不均匀,必要时可进行复染。
七、思考题
1
.电泳时,点样端置于电场的正还是负?为什么?
2
.电泳后,泳动在前面的是何种蛋白质?各谱带为何种成分?请分析原因。
3 .
电泳图谱清晰的关键是什么?如何正确操作?
实验四 维生素 C 的定量测定(2,6-二氯酚靛酚滴定法 )
一、实验目的
1.
学用
2,6
—二氯酚靛酚滴定法测定维生素
C
含量的原理及方法。
2.
掌握滴定法的一般过程及操作技术
二、实验原理
维生素
c
又称为抗坏血酸,其还原型能还原染料
2,6-
二氯酚靛酚钠盐,本身
则氧化成脱氢抗坏血酸。
2,6-
二氯酚靛酚在碱性溶液中呈深蓝
,
被还原后变为
无,在酸性介质中呈浅红。因此可用蓝的碱性染料
2,6-
二氯酚靛酚标准
溶液滴定样品,对含维生素
C
的酸性浸出液进行氧化还原滴定
,
染料被还原为无
,
当到达滴定终点时
,
多余的染料在酸性介质中则表现为浅红
,
由染料用量计
算样品中还原型抗坏血酸的含量。
三、实验试剂及器材
1. 实验试剂:
(
1
)
0.1% 2,6-
二氯酚靛酚
(
2
)
1%
、
2%
草酸溶液
(
3
)标准抗坏血酸溶液(
0.2mgVc/ml
)
(
4
)样液
2. 实验器材:
碱式滴定管、铁架台、蝴蝶夹、锥形瓶、微量移液器、枪头等
四、实验步骤
1.
标准滴定:
取标准
Vc 1.0ml
(含
0.2
毫克抗坏血酸)与空锥形瓶中,加入
9.0ml 1%
草酸,
用
2,6-
二氯酚靛酚滴定至淡红,并保持
15
秒不变即为终点。用所用染料计算
1ml
染料相当于多少毫克抗坏血酸。滴定开始时,染料要迅速加入,直到红不
立即消失,才一滴一滴加入,并不断摇动锥形瓶,直至淡红
15
秒不退。滴定
过程一般不超过
2
分钟。
2.
样液滴定:
取两份样液各
10ml
,分别放入
100ml
锥形瓶中,滴法同前,但不加草酸
计算样品抗坏血酸含量。
五、实验结果与分析
1.
根据标准
V
C
的量及滴定所需的染料,计算出每毫升染料可以滴定到少
V
C
2.
根据待测样液滴定所需的染料体积计算样液中
V
C
的含量
试分析测定的结果与实际是否相符,造成结果误差的原因有哪些?
六、实验注意事项
1.
注意滴定管的正确使用
首先加标准溶液到
0
刻度以上
2-3ml
处,排净尖嘴内的气泡。然后调整液面
高度到
0
刻度或
0
刻度以下。
2.
滴液时先快后慢,接近所取体积时逐点滴入。
3.
读取刻度是目光平视刻度线,刻度线对准液体凹面。
七、思考题
1.
实验过程中,要测得准确的还原型维生素
C
值,实验过程中应注意哪些操作
步骤,为什么?
2.
在测定过程中,样品的草酸提取液为什么不能暴露在光下?
3.
试简述维生素
C
的生理意义。
实验五 从动物组织中提取脱氧核糖核酸
一、实验目的
1.
学和掌握用浓盐法从动物组织中提取
DNA
的原理和技术
2.
了解分离提取
DNA
的一般原理。
二、实验原理
1.
动物细胞中的核糖核酸(
RNA
)与脱氧核糖核酸(
DNA
)与蛋白结合形成核
蛋白。分别表示为
RNP
和
DNP
。
RNP
和
DNP
在不同浓度氯化钠溶液中的溶
解度有显著差别。在
0.14M NaCl
中,
DNP
溶解度低,
RNP
溶解度高;在
1-2M
NaCl
溶液中,
DNP
溶解度高,
RNP
溶解度低。故调整
NaCl
溶液的浓度可将
RNP
和
DNP
从样本中逐步分离出来。
2.
加变性剂
SDS
可使蛋白质变性,与
DNA
分离。 核酸本身带负电荷,结合正
电荷的蛋白质,用于核酸提取的去垢剂,一般都是阴离子去垢剂。去垢剂的作用:
1
)溶解膜蛋白及脂肪,使细胞膜破裂;
2
)溶解核糖体上面的蛋白质,使其解聚,将核酸释放出来;
3
)对
RNase
、
DNase
有一定的抑制作用。如:
SDS
、脱氧胆酸钠、
4-
氨基水杨
酸钠、萘
-1.5-
二磺酸钠、三异丙基萘磺酸钠
3.
用有机溶剂沉淀,去除蛋白。本实验所用的有机溶剂为:氯仿
-
异丙醇混合液
(
24:1
); 氯仿:使蛋白变性并加速有机相和水相的分层,增加核酸得率,同
时去除脂类。 异丙醇:减少泡沫,也能促使有机相和水相分离。
4. DNA
不溶于乙醇等有机溶剂,因此可用乙醇沉淀法来纯化和浓缩
DNA
。
DNA
分离提取的原则
1
)
DNA
结构的完整
2
)排除其他分子的污染
a.
核酸样品中不应存在对其有抑制作用的有机溶剂和过高浓度的金属离子
b.
将其他生物大分子如蛋白、脂类分子的污染应降到
c.
排除
RNA
的污染
三、实验试剂及器材
1.
试剂:
1
) 新鲜猪肝
2
)
0.14M NaCl-0.15M EDTA Na2
溶液
3
)
25% SDS
4
)
5M NaCl
5
)
氯仿
-
异丙醇混合液
6
)
95%
乙醇
2.
器材:
离心机、恒温水浴箱、托盘天平、烧杯、玻棒、微量移液器等
四、实验步骤
1.
将猪肝用
0.14M Nacl-0.15M EDTANa2
溶液洗去血液,剪碎,置匀浆机中研
磨成糊状。
2.
取
50 mL
猪肝糜离心
6min
,
3500rpm
。(离心机已经调整到位,直接操作即可)
3.
弃去上清液,剩余沉淀用
20mL 0.14M Nacl-0.15M EDTA
溶液洗涤,离心
6min
。
重复以上操作一遍。
目的是尽量除去
RNP
。所得沉淀为
DNP
粗品。
4.
向上述沉淀中加入
0.14M Nacl-0.15M EDTA
溶液,使总体积为
44mL
,然后
滴加
25% SDS
溶液约
3mL
(此步骤由老师把关),边加边搅拌。加毕,于
60℃
水浴保温
10min
,其间不停搅拌,取出冷却至室温。
目的是使核酸与蛋白质分
离。
5.
加入
5M Nacl
溶液
10mL
,此时
Nacl
的浓度正好为
1M
,
DNA
的溶解度是水
中的两倍,搅拌
10min
,加入约一倍体积的氯仿
-
异丙醇(
40ml
)混合液,
充分混匀,离心
6min
,
3500rpm
。
6.
取出离心管,内容物分为三层,上层为
DNA
溶液,中间是变性蛋白质凝胶,
底部为有机相。小心取出上清液,置于烧杯中。
有机相回收!
7.
由老师加入
1.5
倍体积
95%
冷乙醇,边加边轻挑,可观察到
DNA
丝状物缠
绕在玻棒上。
由老师打分。
五、实验注意事项(补充一下)
1.
各操作步骤要轻柔
,
尽量减少
DNA
的人为降解。
2.
取各上清时
,
不应贪多
,
以防非核酸类成分干扰。
3.
异丙醇、乙醇等要预冷
,
以减少
DNA
的降解
,
促进
DNA
与蛋白等的分相及
DNA
沉淀。
4.
提取
DNA
过程中所用到的试剂和器材要进行无核酸酶化处理。
5.
试剂均用高压灭菌双蒸水配制。
实验六 核酸浓度测定——紫外吸收法
一、实验目的
1.
了解
Denovix
的基本原理并掌握其使用方法;
2.
掌握使用紫外分光光度法测定核酸含量的原理和方法。
二、实验原理
核酸、核苷酸及其衍生物都具有共轭双键,具有紫外吸收。
RNA
和
DNA
的
紫外吸收峰为
260nm
。一般在
260 nm
波长下,每毫升含
1mg DNA
溶液的光吸
收值约为
0.020
,每毫升含
1mgRNA
溶液的光吸收值为
0.022
。故测定待测浓度
RNA
或
DNA
溶液
260nm
的光吸收值即可计算出其中核酸的含量。
蛋白质由于含有芳香氨基酸,因此也能吸收紫外光。通常蛋白质的吸收高峰
在
280nm
处,在
260nm
处的吸收值仅为核酸的十分之一或更低,故核酸样品中
蛋白质含量较低时对核酸的紫外测定影响不大。
纯净的
RNA
溶液,其
A260/A280
≥
2
;纯净的
DNA
溶液,其
A260/A280
≥
1.8
。如果小于
1.8
或
2.0
,表示存在蛋白质或酚类物质的影响。
A230
表示表示样
品中存在一些污染物,如碳水化合物、多肽、苯酚等。
Denovix
核酸蛋白测定仪采用一个可以产生多个波长的光源,通过系列
分光装置,从而产生特定波长的光源,光源透过待测试的样品后,部分被吸收,
计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。
dsDNA
的消光系数为
50
,核酸的浓度
ng/ul=A260
╳
50
RNA
的消光系数为
40
ssDNA
的消光系数为
33
三、实验试剂及器材
(
1)
Denovix
核酸蛋白分析仪(微量)
(
2)微量移液枪、微量枪头、1.5ml 离心管、
ddH2O
、吸水纸、擦镜纸
四、实验步骤
1.
清洗样品台:
2μl
灭菌的
ddH2O
点在样品台上,放下悬臂,
10s
后抬起悬臂,
用干净的无尘纸擦掉即可。
2.
使用溶解样品的缓冲液
1-1.5μl
点在样品台上,放下悬臂,点击
Blank
,测完
之后擦掉即可。
3.
混匀样品后,
1-1.5μl
点在样品台上,放下悬臂,点击
Measure
,出现下图的
界面。
4.
测量完样品后请及时擦掉样品。
五、实验结果
记录核酸的浓度,并分析纯度
六、实验注意事项
1.
首次使用,请先清洁样品台。抬起悬臂,滴
1-2ul
灭菌蒸馏水于样品台上,
放下悬臂使上下界面接触,再用无尘纸或擦镜纸擦去上下表面液滴。
2.
打开测量应用,在样品台上滴加
1ul
溶解样品的
buffer
,注意观察液滴中
不能有气泡。
3.
测量结束后,立即擦掉样品,样品干在样品台上,造成污染。
实验七 血清谷丙转氨酶的测定(King 氏法)
一、实验目的
1.
掌握血清谷丙转氨酶活力测定的原理和方法;
2.
进一步熟练标准曲线的制作和分光光度计的使用。
二、实验原理
1.
生物机体内转氨基作用是
α
-
氨基酸的氨基通过酶促作用转移到
α
-酮酸的
酮基位置上,生产相应的酮酸和氨基酸的化学反应。催化这反应的酶称为转
氨酶,其辅酶为磷酸吡哆醛。转氨酶广泛存在于机体的各种组织中,在肝、
心、肾等组织中的谷丙转氨酶、谷草转氨酶活性较高。在正常的新陈代谢过
程中,血清内维持一定水平的转氨酶活性(即正常值)。
当肝、心、肾等组织发生病变时,由于组织细胞肿胀,坏死导致大量的酶释
放至血流中,从而引起血清谷丙转氨酶、谷草转氨酶活性显著升高。因此测定
这些酶的活性对某些疾病的临场诊断具有重要的参考价值。
2.
血清中的谷
-
丙转氨酶(
ALT
),在
37
℃、
pH7.4
的条件下,可催化基质(底
物)液中的丙氨酸与
α
-
酮戊二酸生成谷氨酸和丙酮酸。
3.
生成的丙酮酸可与起终止和显作用的
2,4
二硝基苯肼发生加成反应,生成
丙酮酸
-2,4-
二硝基苯腙,进而在碱性环境中生成红棕的苯腙硝醌化合物,
其颜的深浅在一定范围内与丙酮酸的生成量,亦即与
ALT
活性的高低成正
比关系。据此与同样处理的丙酮酸标准液相比较,便可算出或通过标准曲线
查出血清中
ALT
的活性。
King
氏法谷丙转氨酶活性单位:每毫升血清在
37℃
与
pH7.4
的基质液
作用
60min
,生成
1μmol
丙酮酸为一个单位。临床检验取血清量为
0.1mL
,
报告数据以
100mL
血清计算,因此实际测得结果乘
1000
即可。例如
0.1mL
丙酮酸标准液中丙酮酸含量为
0.2μmol
,即相当
GPT200U/100mL
。
三、实验试剂及器材
1.
试剂:
1
)
pH7.4
磷酸缓冲溶液
2
)
L-
丙氨酸和
α
-
酮戊二酸混合液
3
)丙酮酸标准液
4
)
2
,
4 -
二硝基苯肼溶液
5
)
0.4mol/L NaOH
溶液
2.
器材:
722
分光光度计、微量移液器、枪头、恒温水浴锅、试管、试管架等
四、实验步骤
1.
取
4
支干燥试管,按下表加入试剂:
管号
血 清
(
mL
)
基质液
(
mL
)
标准丙酮酸
(
mL
)
磷酸缓冲液
(
mL
)
1
(空白管)
0.6
2
(对照管)
0.1
0.5
3
(标准管)
0.5
0.1
4
(样品管)
0.1
0.5
2.
加毕摇匀,置
37
℃水浴中保温
30
分钟,取出冷却至室温。各加
0.5mL 2,4 -
二硝基苯肼溶液,准确作用
5
分钟。各加
0.4mol/L NaOH
溶液
5mL
,摇匀,
10
分钟后比。以
1
号管调零,测
2
、
3
、
4
号管
A530
,按下式计算丙酮酸生
成量(注意单位):
五、实验注意事项
1.
为溶血及其他因素对酶活性测定的影响,实验过程所用的一切器皿(注
射器、试管等)应清洗干净,干燥后方能使用。
2.
为操作结果,测定酶活性时应恒定
pH
,保温时间,选用固定的比
计,比杯以减少误差。
3.
吸量准确,严格控制反应时间和温度。
实验八 基于口腔拭子 PCR 基因组 DNA 扩增实验
一、 实验目的
1.
了解
PCR
基因扩增的一般原理
2.
掌握
PCR
基因扩增操作技术
二、 实验原理
PCR
(
Polymerase Chain Reaction
)是聚合酶链式反应的简称,指在引物指导下由
酶催化的对特定模板
(
克隆或基因组
DNA)
的扩增反应,是模拟体内
DNA
复制
过程,在体外特异性扩增
DNA
片段的一种技术,在分子生物学中有广泛的应
用,包括用于
DNA
作图、
DNA
测序、分子系统遗传学等。
1. PCR
扩增的基本特征及要素如下:
(
1
)
PCR
技术的基本原理类似于
DNA
的天然复制过程
(
2
)是以单链
DNA
为模板,
4
种
dNTP
为底物,在模板
3'
未端有引
物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量
的模板
DNA
得到大程度的扩增。
(
3
)
PCR
反应需要在一定的条件下才能完成,只有这些条件协调作
用时才能达到很好的效果
: (1)
缓冲液
; (2)
脱氧三磷酸核苷
(dNTP) ;(3)
引物
;(4)
模板
; (5) DNA
聚合酶。
2.
根据
DNA
的半保留复制,以及
DNA
分子在体外不同的温度下双
链和单链可相互转变的机制,在体外人为地控制反应系统的温度,使
双链
DNA
变性
(denature)
、退火
(annealing)
、延伸
(extension),
实现
DNA
的扩增。
(
1
)变性:模板
DNA
通过加热至
95
℃左右,使
DNA
双螺旋的氢键断裂,
形成单链
DNA,
作为反应的模板;
(
2
)退火:模板
DNA
经加热变性成单链后,温度降至引物的
Tm
值
左右或以下
(
比
Tm
低
5
°
C
,通常为
55~65
°
C)
,引物与模板
DNA
单链的互补序列配对结合;
(
3
)延伸:
DNA
模板
-
引物结合物在
DNA
聚合酶
(
一种耐热的
DNA
聚合酶
)
的作用下,于
70~74
℃下,以引物
3'
端为起始点按
5'
→
3'
方向
使
DNA
新链延伸。
三、试验试剂及器材
1.
仪器:
(
1
)
PCR
仪
(
2
)移液枪、涡旋仪、离心机
2.
样品及试剂:
(
1
)样品:口腔拭子
(
2
)样本稀释液
(
3
)亚甲基四氢叶酸还原酶(
MTHFR
)
C677T
试剂盒
四、实验步骤
1.
口腔拭子样本采集
(
1
)取样前
30
分钟,不要吃东西,吸烟,饮酒等。准备一杯清水,
饮入约
50ml
清水充分洗漱口腔约
10
秒,吐掉;
(
2
)重复上述步骤
2-3
次。取样推荐漱口后半个小时 。
(
3
)撕开口腔拭子外包装,小心取出口腔拭子(注意:整个取样过
程中手不能接触拭子部分);
(
4
)用拭子刮拭脸颊内部
20-30
次,尽量避免接触牙齿跟舌头;
(
5
)将拭子伸入采样管,根据不同型号的拭子采用推入或折断采样头;
(
6
)旋转采样管,采样完成。
2.
样品的处理
(
1
)取拭子样本涡旋混匀
(30s
左右
)
,再以
1
:
2
吸取拭子样液与样
本稀释液涡旋混匀,反应
2
分钟后,作为模板进行
PCR
实验。
(
2
)
PCR
体系准备:
每人份需做两个反应,取两个
0.2ml PCR
管,在
PCR
管盖上标记
M
、
WT
;在标有
M
的管中加入
44μl M
扩增液,在标有
WT
的管中加入
44μl
WT
扩增液;分别向以上的
M
和
WT
管中个加入
1μl
反应液,盖紧管盖,涡旋混匀,离心待用;在标有
M
和
WT
的管中分别加入
5μl
待测样本
(
已用样本
稀释液处理过
)
,盖紧管盖,涡旋混匀,瞬时离心。
3. PCR
扩增
将
PCR
管放入
PCR
仪中,按如下程序扩增:
50
℃
2 min
;
95
℃
3min30sec
;
94
℃
5sec
、
60
℃
10sec
、
65
℃
30sec
(
31Cycles
);
65
℃
10min
;
4
℃
Hold
。
取出
PCR
产物,
2~8
℃保存。
五、结果分析
1.
从密封袋中取出检测卡,将待测样本
M
与
WT
管中的
PCR
产物(用
手动或者自动化加样平台)滴加在检测卡对应的样品垫处,待
2~5 min
对结果
进行判读,
20min
后结果不。
2.
将待测样本
M
与
WT
管中的
PCR
产物分别滴加在检测卡对应的样品垫
上,根据在检测线(
T
线)是否出现条带判读
C677T
位点的基因型。若
M
管
产物在试纸条上
T
线处不出现条带而
WT
管产物出现条带,则为野生型
(
677CC
型);反之则为纯合突变型(
677TT
型),若两管产物均在试纸条
T
线
处出现条带则判读为杂合突变型(
677CT
型);无效判定:质控线(
C
线)不
出现条带,可能为操作不正确或试纸条已变质损坏。
六、注意事项
实验室应该遵循
PCR
实验规范的要求分区操作,各区物品均为,不得
交叉使用,加模板和引物的移液器不能混用,每次加样后均需更换吸头。
1
.隔离不同操作区
;
2
.分装试剂
;
3
.严格实验操作
;
4
.严格按无菌操作的原则进行
PCR
操作等。
七、思考题
1.
循环次数是否越多越好
?
为何?
2.
如何根据实验结果优化
PCR
体系?
下学期实验:
实验一 核酸浓度测定——定磷法
一、实验目的
1.
掌握定磷法测定核酸含量的原理和方法
2.
熟练掌握分光光度计的使用方法
二、实验原理
1.
核酸分子中含有一定比例的有机磷,一般为
9.2%
左右
(RNA
含磷量约
9.0%
,
DNA
含磷量约为
9.2%)
,若测得某一核酸样品中有机磷的含量,即可推算其
核酸的含量。
2.
用强酸使核酸分子中的有机磷消化成无机磷
3.
酸性环境中,无机磷再与钼酸铵结合成磷钼酸铵。
PO
4 3-
+ 3NH
4 +
+ 12MoO
4 2-
+ 24H
+
(NH
4
)
3
PO
4
·
12MoO
3
·
6H
2
O
↓
(
黄
)+6H
2
O
4.
当有还原剂存在时,
Mo
6+
被还原成
Mo
4+
,此
4
价钼再与试剂中的其它
MoO
4 2
-
结合成
Mo(MoO
4
)
2
或
Mo
3
O
8
呈兰,称为钼兰。
钼兰在一定浓度范围内
(
无
机磷含量在
1
—
25
μ
g),
兰的深浅和磷酸的含量成正比
,
可用比法测定其
光吸收值。
(NH
4
)
3
PO
4
·
12MoO
3
·
6H
2
O +
还原剂(抗坏血酸)
钼兰
Mo(MoO
4
)
2
或
Mo
2
O
8
三、实验试剂及器材
1.
试剂:
1
) 硫酸
2
)标准磷溶液(
20
微克磷
/
毫升)、
3
)定磷试剂(在使用前将上述试剂按以下比例混合
,
蒸馏水
:17% H
2
SO
4
:
2.5%
钼酸铵
: 10%
抗坏血酸
= 2
:
1
:
1
:
1
(
V/V
))
4
)样液
2.
器材:
通风橱、消化仪、容量瓶、移液器、试管、
722
分光光度计等
四、实验步骤
1.
磷标准曲线的绘制:取
6
只试管,按下表加入试剂
管号
标准磷溶液
(mL)
去离子水
(mL)
定磷试剂
(mL)
1
0
3
3
2
0.2
2.8
3
3
0.4
2.6
3
4
0.6
2.4
3
5
0.8
2.2
3
6
1
2
3
7
总磷
3mL
0
3
8
无机磷
3mL
0
3
加毕摇匀,于
45℃
水浴中保温
10
分钟(注意保温时间相同),冷却,测
A660
,
以磷含量为横坐标,
A660
为纵坐标作图。
2.
总磷的测定:
取样液
1.0 mL
于克氏烧瓶中,加入
2.5mL 27% H2SO4 ,
烧瓶口放一小漏斗,
于通风橱中加热消化,浓烟散尽溶液基本无透明即表示消化完成。冷却,将消
化液移至
100mL
容量瓶中,用少量去离子水冲洗烧瓶两次,洗涤液一并倒入容
量瓶,定容,摇匀后取
3.0mL
置于
7
号试管中,加入定磷试剂
3.0mL
,摇匀,
45℃
水浴保温
10
分钟,测
A660
。
3.
无机磷的测定:
取样液
1.0mL
于
100mL
容量瓶中,加去离子水至刻度,摇匀后取
3.0mL
置
于
8
号试管中,加入
3mL
定磷试剂,摇匀,
45℃
水浴保温
10
分钟,测
A660
。
4.
计算:
有机磷
=
总磷
-
无机磷
由标准曲线查得有机磷微克数(
X
)
,
按下式计算样品中核酸百分含量。
样品重量(
2000
微克)
五、实验注意事项
1.
消化溶液定容后务必上下颠倒混匀后再取样。
2. 1-8
号管
同时
加入定磷试剂后再放入
45
度水浴。
3.
分光光度计的使用:不用的时候要开着盖,注意比皿毛面。
顺序为
1-4
;
1 5-7
;
1 8
。个不要动,用于调零。
4.
标准曲线的绘制
:
得到
1-8
号管的吸光度后,写在实验报告表格的右侧。进
里面的电脑,用
excel
拟合曲线,得到
R
方值,写在大家的实验报告纸上。要
求
R
方大于
0.995
,回去写实验报告时需要用坐标纸。
5.
废液盆里
只能
倒
1-8
号管中的溶液。枪头、擦镜纸扔在一次性杯子里。
6.
试剂及器皿清洁,不含磷;研究生检查试管内水珠不挂壁才能走。
实验二 胍盐-
β
巯基乙醇法提取 RNA
一、实验目的
1.掌握胍盐/ß-巯基乙醇法提取 RNA 的原理和方法。
2.掌握链 cDNA 合成的原理和方法。
二、实验原理:
RNA 的提取方法:
1.异硫氰酸胍/苯酚法(TRIZOL)
2.胍盐/ß-巯基乙醇法
胍盐裂解样本,抑制 Rnase 的活性,
β
-巯基乙醇变性蛋白,离心柱上用 DNA
和蛋白酶消化基因组 DNA 和蛋白,然后漂洗纯化的方法。
3.介质吸附法
RNA 的鉴定分析
纯度: OD260/OD280 1.9—2.1 ,说明有部分降解荧光光谱
链 cDNA 的合成:
以 RNA 为模板,反转录为 cDNA,由逆转录酶催化,该酶合成 DNA 时需要引
物引导,常用引物是 oligo dT、随机引物或基因特异引物(GSP)维生素 B2易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光照易分解,
对热稳定。维生素 B2 溶液在 430~440 nm 蓝光的照射下,发出绿荧光,荧
光峰在 535 nm。维生素 B2 在 pH=6~7 的溶液中荧光强度大,在 pH=11 的碱
性溶液中荧光消失,所以可以用荧光光度法测维生素 B2 的含量。
三、试剂与仪器:
总 RNA 提取试剂盒(天根 RNAprep Pure Cell/Bacteriit);链 cDNA
合成试剂盒(Tara PrimeScript™ RT Master Mix);无菌,无RNA酶离心
管无菌,无 RNA 酶枪头低温离心机等
四、实验操作:
1.提取总 RNA
1) 裂解细胞:确定细胞数量,吸除细胞培养基上清,加入 PBS 后吸除,加入
600ul 裂解液 RL(胍盐/ß-巯基乙醇)5min。
2) 将溶液转移至过滤柱 CS 上(过滤柱 CS 放在收集管中),12,000 rpm 离
心 2 min,收集滤液。
3) 向滤液中加入 1 倍体积 70%乙醇,混匀,得到的溶液和沉淀一起转入吸附柱
CR3 中, 12,000 rpm 离心 60 sec,倒掉收集管中的废液。
4) 向吸附柱 CR3 中加入 350
μ
l 去蛋白液 RW1,12,000 rpm 离心 60 sec,倒掉
收集管中的废液,将吸附柱 CR3 放回收集管中。
5) 向吸附柱 CR3 加入 80
μ
l 的 DNase I 工作液(10
μ
l DNase I 储存液
+70
μ
l RDD 溶液),室温放置 15 min。
6)向吸附柱 CR3 中加入 350
μ
l 去蛋白液 RW1,12,000 rpm 离心 60 sec,倒掉
收集管中的废液,将吸附柱 CR3 放回收集管中。
7)向吸附柱 CR3 中加入 500
μ
l 漂洗液 RW ,室温静置 2 min,12,000 rpm 离心
60 sec,倒掉收集管中的废液,将吸附柱 CR3 放回收集管中。再重复一次。
8)12,000 rpm 离心 2 min,倒掉废液。将吸附柱 CR3 置于室温放置 10 分钟,以
彻底晾干吸附材料中残余的漂洗液。
9)将吸附柱 CR3 转入一个新的 RNase-Free 离心管中,加入 30-100
μ
l
RNase-Free ddH2O 室温放置 2 min,12,000 rpm 离心 2 min,得到 RNA 溶液。
10)RNA 鉴定分析(浓度,纯度)。2. 采用 TaRa PrimeScript RT Master Mix 进行 cDNA 链合成:
1)按下列组分配制 RT 反应液
5X PrimeScrip Mix 2
μ
l
Total RNA (50
μ
M) -- ul
RNase free H2O up to 10
μ
l
2)反转录反应条件如下
37℃ 15min (反转录反应)
85℃ 5sec (反转录酶失活反应)
五、实验注意事项
1. 严格控制外源性 RNA 酶的污染:外源性的 RNA 酶存在于操作人员的手汗、唾
液等,也可存在于灰尘中,造成器械、玻璃制品、塑料制品、电泳槽、研究人
员的手及各种试剂的污染。
2. 大限度地抑制内源性的 RNA 酶:而各种组织和细胞中则含有大量内源性的
RNA 酶。
3. 戴手套。因为皮肤经常带有细菌,可能导致 RNase 污染。
4. 使用无 RNase 的塑料制品和枪头避免交叉污染。
5. RNA 在裂解液 RL 中时不会被 RNase 降解。但提取后继续处理过程中应使用不
含 RNase 的塑料和玻璃器皿。
6. 配制溶液应使用无 RNase 的水。
实验三 real-time PCR 测端粒酶 mRNA 表达
一、实验目的
1.掌握 RT-PCR 基因扩增的原理和过程
2.了解端粒酶的结构与功能
二、实验原理:
1. 实时定量 PCR 技术:
利用荧光信号的变化实时检测 PCR 扩增反应中每一个循环扩增产物量的变化,
通过 Ct 值和标准曲线的关系对起始模板进行定量分析。
Ct 值的定义:PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。
Xn = X0 × (
1+En)Ct
lg Xt =lg X0 + Ct lg(
1+En)
Ct = -k lg X0 + b
X0 :起始模板数量
En:扩增效率
Xt:荧光扩增信号达到阈值时扩增产物的量,在阈值设定以后,它是一个常数
Log 模板起始浓度与 Ct 值呈线性关系。
模板 DNA 量越多,荧光达到阈值的循环数越少,即 Ct 值越小。
2.常用荧光标记方法:
特异性荧光标记 TaqMan Probe
非特异性荧光标记 SYBR Green I:是一种结合于 dsDNA 双螺旋小沟区域
的具有绿激发波长的染料。
问题点:
SYBR Green I 与双链 DNA 进行结合后散发荧光,因此如果反应体系
中有非特异性扩增或引物二聚体的产生,也将同时被检测,从而可能导致检测
结果不准确。
关键点:
设计合适引物,非特异性扩增!
端粒酶:通过识别并结合富含胞嘧啶 C 的端粒末端,以自身 RNA 为模板, TER
催化,合成端粒的 DNA 重复序列,从而阻止随着 DNA 复制和细胞分裂所
造成的端粒的不断缩短, 进而稳定染体的长度,避免细胞因端粒丢失
所导致的凋亡。因此,端粒酶在细胞永生化和肿瘤发生中起着重要作用。
相对定量分析——2 -
∆ ∆
Ct 法
三、试剂与仪器:
1. LightCycler 480 SYBR Green I Master
2. LightCycler 8-Tube Strips (white)
3. 无菌,无RNA酶离心管
4. 无菌,无RNA酶枪头
四、实验操作:
1. 加样:试剂 体积
模板(稀释 5 倍) 2µl
Master mix,2×conc. 10µl
正向引物 1µl
反向引物 1µl
水,PCR 级别 6µl
总体积 20µl
2.PCR 程序设定:SYBR Green I 选择“SYBR Green I /HRM Dye”,反应总体积
20 ul。
3.设定每个程序中对应步骤的①温度(Target)、②信号获取模式(Acquisition
Mode)及 ③时间(Hold)。
4.设定完成后,放入样板,窗口右下方的“Start Run” 按钮将由灰变为蓝,
此时即可点击之,开始运行实验。
5.运行完毕后,点击界面左侧“Sample Editor”,对样本详细信息进行编辑。
6.点击界面左边的“Analysis”,进入分析界面,进行 Tm 分析 (Tm Calling) 分
析和相对定量 (Relative Quantification) 分析
五、结果分析
2 - △△Ct 法:假设目的基因和参照基因扩增效率都接近 100%
△Ct(第 n 组)=16-17=-1 △Ct(组)=18-17.4=0.6
△△Ct=△Ct(第 n 组)-△Ct(组)=-1-0.6=-1.6
比率(癌细胞组/正常细胞组)=2-△△Ct=2-(-1.6) = 3
所以 TERT 基因在癌细胞的表达水平是正常细胞的 3 倍。
要求实验报告分析出自己组对比组的结果
六、实验注意事项
1、能标准的使用微量移液器,使重复样本得到相同的结果。2、学会分析溶解曲线,得到循环 CT 值后学会如何分析结果。
实验四 蛋白分子量测定——SDS-聚丙烯酰胺凝胶电泳
一、实验目的
1.
学
SDS-PAGE
测定蛋白质分子量的基本原理
2.
掌握
SDS-PAGE
垂直板电泳的操作方法
二、实验原理
聚丙烯酰胺凝胶(
PAGE
)是由丙烯酰胺(
Acr
)和交联试剂
N,N
’
-
甲叉双丙
烯酰胺
(Bis)
在有引发剂(如过硫酸铵)和增速剂(如
N,N,N
’
,N
’
-
四甲基乙二胺,
TEMED
)的情况下聚合而成的。在一定浓度范围内,改变聚合体系中
Acr
和
Bis
的比例,可得到不同网眼大小的凝胶,由于凝胶的三维网状结构,对在凝胶中泳
动的不同分子量的质点有着选择和阻碍,因此具有分子筛效应,决定着聚丙烯酰
胺凝胶的有效分离笵围。
SDS-
聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进了十二烷基硫酸
钠(
sodium dodecyl sulfate
,简称
SDS
),
SDS
是一种阴离子去污剂,它能破坏
蛋白质分子之间以及与其他物质分子之间的非共价键,使蛋白质变性而改变原有
的空间构象。是在强还原剂,如巯基乙醇存在下,由于蛋白质分子内的二硫
键被还原剂打开,不易再氧化,这就了蛋白质分子与
SDS
充分结合,形成
带负电荷的
SDS-
蛋白质复合物。
带负电荷的蛋白质
-SDS
复合物由于结合了大量的
SDS
,使蛋白质丧失了原有的电荷状态,形成了仅保持原有分子大小为特征的负离子团块,从而降低或消除
了各种蛋白质分子之间天然的电荷差异。
蛋白质
-SDS
复合物在水溶液中的形状,近似于雪茄烟形的长椭圆棒。不同蛋
白质的
SDS
复合物的短轴长度都一样,约为
1.8nm
,而长轴则随蛋白质的分子
量成正比变化。这样的蛋白质
-SDS
复合物在凝胶中的迁移率,受蛋白质原
有电荷和形状的影响,而只是椭圆棒的长度,也就是蛋白质分子量的函数。
lgMw = -bRm + K
Mw
:蛋白质的分子量;
Rm
:相对迁移率
b
: 斜率
;
K
:截距
当条件一定时,
b
,
K
均为常数,即此时
lgMw
与
Rm
的关系为线性关系,
如以
lgMw
对
mR
作图,应得到一条直线,如上图。
若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可获得一条标
准曲线。未知蛋白质的相同条件下进行电泳,根据它的电泳迁移率即可在标准曲
线上求得分子量。
三、实验试剂及仪器
1.
实验试剂
(
1
)
30%
丙烯酰胺(
Acr
):
Acr/
甲叉双丙烯酰胺
(Bis)=29:1
(
2
)
10%SDS
(十二烷基磺酸钠)
(
3
)
10%
过硫酸铵
(AP)
(
4
)
TEMED
(四甲基乙二胺)
(
5
)
2
×上样缓冲液:
10%SDS
(
4ml
)
+
巯基乙醇(
1ml
)
+0.2%
溴酚蓝(
2ml +
甘油
2ml +1M pH6.8Tris-HCl
(
1ml
)
(
6
) 浓缩胶缓冲液(
1M Tris-Cl
缓冲液
pH6.8
)
(
7
) 分离胶缓冲液(
1.5M Tris-Cl
缓冲液
pH8.8
)
(
8
) 电泳缓冲液
: (SDS 20g
,
Tris 60g,
甘氨酸
282.2g, pH8.3
)加蒸馏水使其溶
解后定容至
2L
。
(
9
) 固定液:乙醇
500ml
,冰乙酸
100ml
混匀,
(
10
) 染液:考马斯亮蓝
R250 1.25g
,甲醇
225ml
,冰乙酸
50ml
,蒸馏水定
溶至
1L
。
(
11
) 脱液:冰乙酸
80ml
,乙醇
250ml
,加蒸馏水定容至
1L
。
2.
实验仪器
(
1
)垂直板电泳装置、电泳仪、制胶架
(
2
)移液枪、移液管
(
3
) 烧杯、培养皿
(
4
) 离心机
四、实验步骤
1.
装板
将垂直板型电泳装置内的板状凝胶模子取出,将玻璃片洗净、凉干、嵌入
凹槽中,形成一个“夹心”凝胶腔,
把装好的凝胶腔置于仰放的电上槽。将电泳槽、凝胶模子串成一体的垂
直板型电泳装置,垂直放置在水平台面上,灌注胶液。
2.
分离胶的配制(
12%
)
试剂
体积
H2O
3.35
(
ml
)
凝胶贮备液
2.5
(
ml
)
分离胶缓冲液
(pH8.8)
2.5
(
ml
)
10% SDS
0.1
(
ml
)
TEMED
5
(
ul
)
10%
过硫酸铵
50
(
ul
)
总体积
10
(
ml
)
3.
分离胶的灌注和聚合
用移液管将所配制的分离胶缓冲液沿着凝胶腔的长玻璃板的内面缓缓注
入,留出梳齿的齿高加
1cm
的空间以便灌注浓缩胶,然后加满蒸馏水。待分离胶凝固后,倒出蒸馏水,用滤纸吸干。
4.
浓缩胶的配制(
5%
)
试剂
体积
H2O
2.92
(
ml
)
凝胶贮备液
0.8
(
ml
)
分离胶缓冲液
(pH6.8)
1.25
(
ml
)
10% SDS
0.05
(
ml
)
TEMED
5
(
ul
)
10%
过硫酸铵
25
(
ul
)
总体积
5.05
(
ml
)
5.
浓缩胶的灌注和聚合
用移液管将所配制的浓缩胶缓冲液沿着凝胶腔的长玻璃板的内面缓缓
加入,将梳子插入胶液顶部,放置室温下待其聚合。
6.
样品的准备
在低分子量标准蛋白质和待测样品中分别加入适量还原缓冲液,放入沸水
中加热
3-5min
,取出冷至室温。
7.
加样
加入电缓冲液,小心拔出梳齿,用微量注射器向凝胶梳孔内加样。同时加
入
Marker
。
8.
电泳
上槽接负,下槽接正,打开直流电源,刚开始时,电压控制在不高于
100V
,
电流恒定在
10mA
;样品进入分离胶后,电压控制在不高于
140V
,电流恒定在
20mA
。待指示剂染料(溴酚蓝)迁移至凝胶下沿
1.0cm
处停止电泳。
9.
染和脱
电泳结束后,撬开玻璃板, 小心将胶取出,放入一大培养皿中。
染:加入染液,置于摇床上染
2h
。
脱:染完毕,倒出染液,加入脱液,置于摇床上脱,数小时更换
一次脱液,直至背景清晰,拍照。
10.
相对分子质量的计算
量出分离胶顶端距溴酚蓝间的距离
(cm)
以及各蛋白质样品区带中心与分离
胶顶端的距离
(cm)
,按下式计算相对迁移率
:
蛋白质样品距分离胶顶端迁移距离
(cm)
Rm =
溴酚蓝区带中心距分离胶顶端距离
(cm)
以标准蛋白质分子量的对数对相对迁移率作图,得到标准曲线,根据待测样
品相对迁移率,从标准曲线上计算出其分子量。
五
、
实验结果与分析
1.
根据凝胶结果,依据标准蛋白条带,判断各个蛋白质样品区带大概分子量。
2.
测量样品中各种蛋白质分子的相对迁移率
Rm
值,然后根据标准曲线计算
出各自分子量
3.
对实验操作及结果中不足之处进行分析。
六、实验注意事项
1
.丙烯酰胺和双丙烯酰胺具有很强的神经毒性并容易吸附于皮肤,操作时应免
避沾在脸、手等皮肤上。好戴一次性塑料手套操作。
2
.
10%
过硫酸铵现用现配,
4
℃冰箱贮存不超过
48
小时。
3
.灌制凝胶时,应避免产生汽泡,因为汽泡会影响电泳分离效果。
4.
蛋白加样量要合适。加样量太少,条带不清晰
;
加样量太多则泳道超载,条带
过宽而重叠,甚至覆盖至相邻泳道。
5
.刚灌注分离胶混合溶液后,应在分离胶液面上加
1-2cm
高的水层,以阻隔空
气。胶液面上加水层时要小心,缓缓叠加,以免冲坏凝胶的胶面。
七、思考题
1.
在不连续体系
SDS-PAGE
中,当分离胶加完后,需在其上加一层水,为什么
?
2.
电缓冲液中甘氨酸的作用
?
3.
在不连续体系
SDS-PAGE
中,分离胶与浓缩胶中均含有
TEMED
和
AP
,试述
其作用
?
4.
样品液为何在加样前需在沸水中加热几分钟
?
实验五 糖酵解中间产物的鉴定
一、实验目的
1
.掌握糖酵解中间产物的鉴定方法和原理。
2
.熟悉通过酶的抑制作用调节代谢途径。
3
.了解使中间产物堆积的方法在研究中间代谢中的意义。
二、 实验原理
在细胞质中,一分子葡萄糖通过一系列反应转化为两分子丙酮酸,并伴随着
ATP
生成的一系列反应是有机体获得化学能的原始的途径,也是原核生物和真
核生物糖类物质分解代谢的共同途径。利用碘乙酸对糖酵解过程中的
3-
磷酸甘油
醛脱氢酶特异地且不可逆地抑制作用,使
3-
磷酸甘油醛向前变化而积累。硫
酸肼作为稳定剂,用来保护
3-
磷酸苷油醛使其不自发分解。然后用
2,4-
二硝基苯
肼与
3-
磷酸甘油醛在碱性条件下形成
2,4-
二硝基苯肼
-
丙糖的棕复合物,其棕
程度与
3-
磷酸甘油醛含量成正比。从而明糖的分解代谢过程中,含有
3-
磷
酸甘油醛的中间产物。
三、实验试剂及器材
1.实验材料
新鲜酵母
2. 仪器:
离心管、移液枪;恒温水浴;离心机
3.试剂:
1
)
2,4-
二硝基苯肼
: 0.1 g 2,4-
二硝基苯肼溶于水
100 ml 2 mol/L
盐酸溶液中,储
于棕瓶中备用。
2
)
0.56 mol/L
硫酸肼溶液
:
称取
7.28 g
硫酸肼溶于
50 ml
水中,这时不会溶
解,当加入
NaOH
使
pH
值达
7.4
时则溶解。
3
)
5%
葡萄糖溶液。
4
)
10%
三氯乙酸溶液。
5
)
75 mol/L NaOH
溶液。
6
)
0.002 mol/L
碘乙酸溶液。
四、实验步骤
1.取小烧杯 3 支,编号,分别加入新鲜酵母 0.3 g,并按表 1 分别加入各试剂,
混匀。
2.将各杯混合物分别放入 37℃水浴中保温 1.0 小时,观察发酵管产生气泡的量
有何不同。
3.在 2 号和 3 号杯中按表 2 补加各试剂,摇匀后放 5-10 分钟
4. 将三支离心管中的上清液分别进行离心或者过滤,3000rpm, 3min。
5.取 3 支试管,分别加入上述滤液 0.5 ml,并按表 3 加入试剂和处理。
(取上清液 0.5 ml,加入 0.75 mol/L NaOH 0.5 ml,混匀后在 37℃水浴保温
10 分钟,然后分别向上述试管中加入 0.5 ml 2,4-二硝基苯肼,混匀后在 37℃
水浴保温 10 分钟,然后加入 0.75 mol/L NaOH 3.5 ml,观察实验结果。)
表 1 糖酵解中间产物的鉴定——发酵产生气泡观察
编号
5%
葡萄糖溶
液 (
ml
)
10%
三氯乙
酸(
ml
)
碘乙酸
(
ml
)
硫酸肼
(
ml
)
发泡量
1
10
(
ml
)
2
1
1
2
10
(
ml
)
0
1
1
3
10
(
ml
)
0
0
0
表 2
补加试剂
编号
10%
三氯乙酸
(
ml
)
碘乙酸
(
ml
)
硫酸肼
(
ml
)
发泡量
2
2
0
0
3
2
1
1
表 3 糖酵解中间产物的鉴定——二硝基苯肼反应
五、结果与分析
实验中哪一发酵管生成的气泡多?哪一管生成的颜深? 为什么?
描述观察到得实验现象并对实验结果加以分析。包括保温后的气泡量及的
显效果。
六、注意事项
1. 本实验虽为定性鉴定,但量取体积等人要求相对准确 ;
2. 注意试剂的添加顺序,编号不要弄混 ;
3. 每步反应前注意要充分混匀 。
七、思考与讨论
1. 实验鉴定的是哪种中间产物?
2. 实验中三氯乙酸、碘乙酸、硫酸肼三种试剂分别起什么作用?
3. 实验中的气泡是什么气体? 如何产生的?
编号
滤液
(ml)
0.75 mol/L
NaOH(ml)
摇
匀
,
室
温
放
置
5
分
钟
2,4-二硝基
苯肼 (ml)
摇
匀
,
室
温
放
置
5
分
钟
0.75 mol/L
NaOH(ml)
1
0.5
0.5
0.5
3.5
2
0.5
0.5
0.5
3.5
3
0.5
0.5
0.5
3.5
实验六 荧光分光光度法测定维生素 B2 的含量
一、实验目的
1.学荧光分光光度法测定多维葡萄糖粉中维生素 B2 的分析原理;
2.掌握荧光分光光度计的使用方法;
3.了解分子荧光产生的机理.
二、 实验原理
维生素 B2 易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光
照易分解,对热稳定。 维生素 B2 在碱性溶液中经光线照射会发生分解而转化为
光黄素,光黄素的荧光比核黄素的荧光强的多,故测 VB2 的荧光时溶液要控制在
酸性范围内,且在避光条件下进行。
核黄素
(V
B2
)
光黄素
多维葡萄糖中含有维生素 B1、B2、C、D2 及葡萄糖,其中维生素 C 和葡萄糖
在水溶液中不发荧光,维生素 B1 本身无荧光,在碱性溶液中用铁氰化钾氧化后
才产生荧光,维生素 D2 用二氯乙酸处理后才有荧光,他们都不干扰维生素 B2
的测定。
维生素 B2 溶液在 430~440 nm 蓝光的照射下,发出绿荧光,其峰值波长为
545 nm。VB2 的荧光在 pH=6~7 时强,在 pH=11 时消失。
三、实验试剂及器材
1. 试剂:
100
μ
g/mlVB2 标准溶液(4%冰醋酸配制,置阴暗处保存);冰乙酸;
多维葡萄糖粉试样
2. 器材:
岛津 RF5301PC 荧光分光光度计 ;微量移液器 ;容量瓶;石英比皿
四、实验步骤
1、打开氙灯,再打开主机,然后打开计算机启动工作站并初始化仪器。
2、仪器初始化完毕后,在工作界面上选择测量项目
设置适当的仪器参数:激发波长 Ex= 435 nm,发射波长 Em=545nm。
3、标准曲线测定,样品测定。
4、制作标准曲线,由标准曲线计算样品中维生素 B2 的含量。
5、 退出主程序,关闭计算机,先关主机,关氙灯。
五、结果与分析
1、 原始数据:标准曲线以及样本的荧光值。
测量 1-6 号标准曲线荧光值:VB2 的含量:0.0ug/ml、0.1ug/ml、0.2ug/ml、
0.3ug/ml、0.4ug/ml、0.5ug/ml。
测量 7 号样品荧光值
2、绘制出标准曲线:要求规范作图
铅笔作图;
横、纵坐标名称及单位;
日期、作者 、曲线名称;
曲线上体现出待测样品的荧光值及浓度值。
3、计算:样品中维生素 B2 的量。
要求: 写出公式、代入数据、写出结果。
实验八 pH 值和温度对酶促反应速度的影响
一、实验目的
1
.了解不同
pH
和温度对淀粉水解和唾液淀粉酶活性的影响。
2
.学会测定酶适
pH
和温度的方法。
二、实验原理
酶都是蛋白质,它的活性受环境 pH 的影响为显著。通常各种酶只有在一
定的 pH 范围内才表现它的活性,一种酶表现其高活性时 pH 的值,称为该酶的适 pH。本实验以唾液淀粉酶在不同的温度和 pH 下对淀粉的作用为例观察温度
和 pH 对酶活性的影响,淀粉的水解程度用其与碘液的呈反应加以区别。
三、实验试剂及器材
1. 试剂:
淀粉;碘;碘化钾;磷酸氢二钠;柠檬酸
2. 器材:
试管 吸量管 试管架 吸耳球
四、实验步骤
1. 溶液配制:
0.5%淀粉溶液(含 0.3%氯化钠)(新鲜配置),碘-碘化钾溶液(4 g 碘及碘化
钾 6 g 溶于 100 ml 蒸馏水中,于棕瓶中保存),0.2 mol/L 磷酸氢二钠溶液,
0.1 mol/L 柠檬酸溶液。
2. 样品收集
每人取一个干净的小烧杯,先用自来水漱口,将口腔内的食物残渣清除干净,
然后去蒸馏水约 20ml 含入口中,做咀嚼动作 3-4min,以分泌较多的唾液。将
口腔中的蒸馏水吐入干净的小烧杯中,此即为稀释的唾液淀粉酶液。
3. pH 对酶活性的影响
(
1)缓冲液的配制
编号
0.2mol/L
磷酸氢二纳(
ml
)
0.1mol/L
柠檬酸(
ml
)
缓冲液(
ml
)
1
5.15
4.85
5.0
2
6.16
3.39
6.2
3
7.72
2.28
6.8
4
9.08
0.92
7.4
5
9.72
0.28
8.0
(
2)底物的准备
6 支干燥的试管编号,依次加入不同 pH 的缓冲液各 3 ml,第 6 号试管与第
3 号相同。再向每个试管中添加 0.5%淀粉溶液 2 ml,摇匀。
(
3)酶促反应时间测定
向第 6 号试管加入稀释 100 倍的唾液 2 ml,摇匀后放入 37 ℃恒温水浴中保
温。每分钟取 1 滴混合液于离心管中或反应板上,加 1 滴碘化钾-碘溶液,呈橙
黄时取出试管,记录时间。
(
4)适 pH 测定
以 1 min 的间隔,依次向 1~5 号试管中加入稀释 200 倍的唾液 2 ml,摇匀,
同样以 1 min 间隔,将 5 只试管放入 37 ℃恒温水浴中保温,反应至所需时间。
依次取出,立即加入碘化钾-碘液 2 滴,充分摇匀。观察颜,可看出不同 pH
值时淀粉被水解的程度,不同 pH 值对唾液淀粉酶活性的影响,并确定其适 pH。
4. 温度对酶活性的影响
(1)取三支试管按下表操作:
试剂
管号
1
2
3
1%
淀粉溶液(
ml
)
1
1
1
放置条件
沸水浴
37
℃
冰浴
稀释唾液(滴)
4
4
4
分别按上述条件继续放置 10 min。
(2) 从三支试管中取出溶液 1 滴于离心管中或反应板上,加上 1 滴碘液,观察呈
现象,记录结果并解释其原因。
五、注意事项
1. 各管反应及操作应在同一水平;
2. 每管间隔相同的时间加样和终止反应以各管反应时间相同。
附件:生化实验.pdf
钼(Mo)是一种金属元素,原子序数为42。它是一种银白的有光泽的金属,具有高熔点和高热导率。钼在自然界中以多种矿石的形式存在,常见的是钼辉矿和钼铜矿。
钼具有许多重要的工业应用。由于其高熔点和耐高温性能,钼被广泛用于制造高温合金、耐火材料和真空炉。钼还是电子产业中重要的材料,用于制造电子管、半导体器件和薄膜电阻器。此外,钼还被用于制造钼丝、钼箔、钼片等材料,用于电子显微镜、X射线管和真空设备。
钼也是一种重要的合金元素。它可以与其他金属如铁、镍、铜等形成合金,提高合金的硬度、强度和耐腐蚀性。钼合金广泛应用于航空航天、汽车、化工等领域。
此外,钼还有一些其他应用。例如,钼在农业中作为植物的微量元素,促进植物生长和提高产量。在医学领域,钼被用作放射性示踪剂和物成分。钼的同位素还被用于放射治疗和核能研究。总体而言,钼在各个领域都有着重要的应用和价值。
化工领域
润滑剂:二氧化钼是一种良好的固体润滑剂,因为它的摩擦系数很低,屈服强度很高,能在真空和各种温、高温下正常使用,因而被广泛应用于燃气轮机、齿轮、模具、航空航天、核工业等领域。
催化剂:钼的化合物是用途广的催化剂之一,被广泛应用到化学、石油、塑料、纺织等行业。例如:二硫化钼具有抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂;钼与钴、镍结合用作石油提炼预处理的催化剂。其他常见的含催化剂有:二硫化钼、氧化钼、钼酸盐、仲钼酸铵等。
电子电气领域
钼具有良好的导电性和耐高温性,热膨胀系数与玻璃相近,被广泛用于制造螺旋灯丝的芯线、引出线及挂钩等部件。此外,钼丝也是理想的电火花线切割机床用电丝,能切割各种钢材和硬质合金,其放电加工稳定,能有效提高模具精度。
医学领域
钼是人体的微量元素之一,也是多种酶的组成部分,在机体的主要功能是参与硫、铁、铜之间的相互反应。适量的钼能够促进人体发育,增强氧在体内的储留下,抑制肿瘤,维护心肌的能量代谢,保护心肌,而钼的缺乏会导致龋齿、肾结石、克山病、大骨节病、食道癌等疾病,因而钼也被用于医中,如钼酸铵这种就主要用于长期依赖静脉高营养的患者。
畜牧领域
钼的生物学作用主要是依靠作为动物体内某些含钼酶类的组成成分,间接影响酶的生物学活性来实现的。除此之外,钼元素在反刍动物营养代谢中发挥着的作用,一方面,钼作为反刍动物瘤胃微生物硝酸盐氧化酶的组成成分,直接参与瘤胃中饲料硝酸盐的转化,另一方面,钼作为硫酸盐氧化酶的辅助因子对瘤胃微生物有刺激作用,这有助于反刍动物对粗纤维类物质的消化,进而促进反刍动物的生长。所以,当牧草和饲料中钼元素含量不足时,就需要按照严格的营养需要和工艺技术要求,将钼元素添加剂加入饲料中,达到满足动物需要的目的,常见的例子就是在奶牛饲料中添加10mg/d的钼。
农业领域
钼为植物体内的“微量元素”之一,缺钼会影响植物正常生长。作为植物生长所的微量元素,钼不仅能促进植物对磷的吸收,还能加速植物体内醇类的形成与转化,提高植物叶绿素和维生素丙的含量,提高植物的抗旱、抗寒以及抗病能力。鉴于钼对植物的重要性,很多国家已经开始生产和使用含钼的微量肥料,例如我国湖南长沙县南华乡用钼酸铵拌种,花生增产32.2%,黑龙江国营农场对大豆施用钼肥,大豆增产10%左右。
美国前国务卿黑格1980 年指出,“资源战争的时代已经开始……仅铬铁矿(的供应)危机就会使美国100 万人失业,冷战实质上是一场资源战。”矿物资源过去一直是,今后仍将是世界各国采用政治的、经济的甚至军事的手段争夺和控制的对象。
对矿物资源控制权的的争夺,从历史上就一直没有停止过。历史和现实都明了美国、、日本的对外行动从来都是受利益驱动的,从来不是道义性的。
次世界大战后的1919 ~1928 年间,美国和英国控制着当时世界已知煤蕴藏量的53%,铁矿石蕴藏量的48%,石油蕴藏量的 76%,铜蕴藏量的79%,铝蕴藏量的81%,铅蕴藏量的74%。还有数不清的势力范围和殖民地。控制着地球大部分资源。德国、日本、意大利为了与欧美列强争夺矿物资源控制权,拓展生存空间。爆发第二次世界大战。
第二次世界大战宣告工业国间利用军事力量争夺资源不是好的方法。加上世界共产主义运动、民族独立运动兴起。二次大战之后,需要一种新贸易秩序进行资源再分配。
1944年7月在美国的布雷顿森林召开的货币与金融会议、由工业强国建议成立贸易组织,来调节世界经贸关系。并把它命名为《关税及贸易总协定》,从1996年1月1日起,由世界贸易组织WTO 取代关贸总协定。在这个由发达国家主导的市场经济体系中,实际商品交换时,由于生产技术,第三世界不发达国家和发展中国家与发达国家之间的交换严重不平等,在一国没有技术生产一种商品时,被对手攫取超额利润。美国和英国、德国、法国、日本、控制着飞机、轮船、汽车、铁路及各种主要家用电器、计算机、摄象机、通讯、机械、新材料,能源、医疗设备、航空航天、等技术,掌握商品与矿物资源定价权。他们对第三世界资源拥有国一致大肆吹嘘经济化、市场能合理配置资源等理论,以获得矿产资源的稳定、、廉价供应市场。
但美国和英国、德国、法国、日本、均对本国矿物资源均实行严格的计划经济。并都建立了战略资源储备制度,禁止、限制开采本国资源。并在获取他国资源上煞费苦心,不惜血本。
1980 年,美国《物资和矿物原料国家、调查和开采法》规定:为保护国家、人民福利和工业生产水平提供的矿物原料。
1982 年,美国总统里根强调了矿物原料对美国国家和对维护美国居民高生活水平的决定性意义,里根政府制定的《国家物资和矿物方案》写道:“美国执行物资和矿物计划,以便,一旦爆发战争和国家处于紧急状态时,美国派 出和支持战斗部队的能力,不会因为缺乏关键性原料而受到削弱”。
战略储备确保资源
美国是世界大矿产资源大国,其钼、硼、天然碱、煤等储量居世界 位,铜、铅、锌、金、银、铂族金属、稀土、硫、磷酸盐、重晶石等的储量居世界前3 位,铁矿石、钨、钒、锂、锆等居前5 位。但美国对于即使是本国能够自给的矿物,也在增加储存量,例如铀,美国是世界上大 的产铀国,但长期以来,它仍从国外大量购买铀,用作储备。美国在阿拉斯加州发现有的石油,但却不急于开采,而是圈定起来作为战略储备。1977年,美国政府决定加强石油储备。把从墨西哥购买的石油注入美国的拱形盐矿 井。1981年下半年,里根政府决定拨出1亿美元作为购买战略资源(其中包括62种矿物、金属和其他原料)之用。1982年4月5日,又决定拨款125亿美元购买战略资源,规定这笔款项专门用于购买铬、钻、钨、铁矾土等战略资源。到1985年储备的战略资源就达到63类93种,包括稀有金属、石油、橡胶、铜、铝、黄金等。
日本于1983年10月,开始时储备稀有金属中的镍、铬、钴、钨、钼、钒、锰,后来逐步扩展到稀土原料,甚至煤炭和铁砂石。除了石油和天然气之外,核电的铀原料也是日本重点储备能源。日本制定了一个25.25万吨天然铀的庞大计划,同时还计划在澳大利亚自主开采5.16万吨,总量将达到30.41万吨。这项计划实施之后,基本上可供日本全国使用20年。日本许多企业从国外很多煤并不是为了使用,而是为了储备。日本国内也有部分煤炭资源,但已经关闭,开采。日本耕地面积只有504万公顷,农业生产仅能满足国内需求的40%。因此,日本还将大米、小麦、大豆等粮食储备放在同等重要的位置,并用法律的形式将其纳入战略储备物资的行列。
美国实施矿产战略的具体作法
美国是世界大矿产消费国, 1999 年美国消费量占世界 位的矿种有:石油、天然气、铜、铅、锌、铝、锡、硫、磷酸盐等;此外,美国煤炭和镍的消费量居世界第2 位,铁矿石等居世界第3 位。正是通过耗用大量的资源,美国的现代化生活水平才得以维持、因此美国对争夺资源十分重视。
美国除将拉美和加拿大作为后院外,19 世纪末20 世纪初,掀起了海外扩张高潮,其势力从大西洋发展到太平洋,成为两洋国家。其扩张的目的之一,就是增加对资源的控制权。当时美国对中国的钨等矿种就十分感兴趣。 二战期间,有一部分美援就是换取中国的钨砂的。
1952 年美国矿物原料委员会提交的的佩利报告就明确指出,美国矿产的供应将可能会出现问题,从角度解决这一问题,加紧对战略矿物原料的争夺和控制,扩大在海外的战略控制,扩大储备。
美国利用第二次世界大战后德国、意大利战败和英国、法国等受到严重削弱之机,通过实施马歇尔计划和策划建议北约组织,确立了对西欧的影响力和控制权。使美国资本进一步加强了对矿物原料的勘查、开发、控制和占有。
1982 年美国战略矿物原料工作组以里根总统的名义向国会提交了一份长达33 页的报告。报告指出,为了加强美国,促进经济繁荣,创造就业机会,减少矿产供应的脆弱性,采取行动。所采取的行动中,除加强储备、着力强调开拓海外,立足于。
美国置联合国不顾先后于1953 和1980 年颁布了“外大陆架土地法“和“深海底固体矿产开发法“,单方面建立开发海底矿产资源的法律法规,鼓励美国矿业公司积从事海洋矿产的勘查开发。其中 1980 年的深海底固体矿产开发法规定,对采矿区的申请面积,不加限制,不征收租金和权利金。并与法国、意大利、日本、英国等签订互惠条约,相互承认对方抢占的公海采矿权益。
1983 年里根总统又发表专属经济区法,以此法建立的专属经济区,比美国本土面积还大70%。里根总统公开说,建立专属经济区是在矿产资源方面采取的关键一招。
联合国海洋法公约已于1994 年11 月生效。美国一直拒签字。美国总统里根还说“这一进程是一个愚蠢“,鼓励美国公司按照美国法律自由采矿。为了开发太平洋东部锰结核富地区,美国成立了四家财团(肯奈科特、斯契尔、因科、洛奇德)。投资5 亿多美元,抢占的海底区域蕴藏有数10 亿吨锰结核。
冷战结束后,在矿物原料的战略供应方面,美国加强对加拿大和墨西哥的控制,美国与加拿大和墨西哥签订了北美自由贸易协定(NAFTA),协议规定由加拿大供应美国铀、镍、钛、铁矿石、铂族金属和钾盐等,由墨西哥向美国供应石油、银、铜等矿产;通过政治、经济、外交行动促使南非(铬铁矿、锰、铂族金属、金、金刚石等重要矿产的资源国)重新 “回到自由世界怀抱“;渗透俄罗斯、中亚(是哈萨克斯坦)及其他新独立的原苏联国家(也包括越南、蒙古、东欧等转轨国家),抢占矿物原料控制权。
1991 年,布什总统公布了美国新的国家资源战略,强调资源供应来源的多元化。其中除传统的拉美和中东地区外,还点到了北非、中亚以及各海域。
伊拉克战争以来,美国以推进“战争”为名,批准美军在2008年9月底之前组建非洲司令部,以便“地协调美军在非洲的行动”。非洲分析人士普遍认为,是理由,目的是掠夺能源;美国负责非洲事务的副国务卿沃尔特坦言,“非洲石油对我们来说是国家战略利益,并将随着我们的发展而变得越来越重要”。根据美国官方统计数字,2006年非洲对美原油日出口量约为223万桶。这是非洲21年来首次超过中东地区,成为美国大的原油来源地。美国宣称,非洲原油品质、易精炼,探明石油储量约为800亿~1000亿桶。建立美军非洲司令部,在军事上可控制整个非洲大陆,在经济上可监控非洲资源及运输通道。
日本实施矿产战略的具体作法
“变他国资源为自己资源”是日本的一贯国策。
日本目前参与利用海外矿产资源主要有三种方式,勘查矿、股本矿和购买矿。勘查矿系指在国外通过勘查开发活动而生产出矿产品,风险大,但性和保障程度高;股本矿系向某些国家的矿山建设提供贷款甚至援助,受援国以一定比例的矿石偿付贷款;购买矿系直接从市场购买,易操作,但不。
对在海外探矿的日本公司,日本政府提供优惠贷款(主要由金属矿业事业团和海外经济合作基金会实施)。贷款额为所需总资金数的50%,需要时可达70%,偿还期限15 年(宽限期5 年)。若项目失败或遇天灾、战争等事故,可减免贷款本金。
日本在海外进行的基础地质调查有两种方式,一种方式称为“海外地质调查“,由日本金属矿业事业团用日本政府的钱进行、以旅游、探险、经援、经济开发、学术交流等名誉调查他国资源;另一种方式称为“海外联合地质调查“,由日本金属矿业事业团与资源国联合进行,由日本政府提供资助。这相当于在海外从事前期勘查的风险,由日本政府承担了。
日本通过“经济/技术援助”等措施改善与资源国的关系;另一方面,组建“石油公团“、“金属矿业事业团“等促进性机构,制定和执行鼓励,全力支持日本公司的跨国矿业经营。在其他方面,采取绑在美国战车上的策略,为美国的相应行动出钱、出力。
通过政府、事业和企业三者之间的良性互动作用,使得日本在短短的几十年时间里,在矿业界树立了举足轻重的,据不统计,迄今日本金属矿业事业团已在40 多个国家开展了140 个以上的矿产资源调查评价、勘查等方面的技术和经济援助项目。为日本企业下一步的勘查开发铺平了道路。
美国、国家、日本是世界大矿产消费国。占全世界人口不到1/4 的发达国家,消耗着3/4 的矿产资源。当前矿产资源市场态势是:发达国家通过国家支持和建立完善的服务系统,以跨国公司为载体,实现矿业企业的跨国经营,加紧实施资源战略,控制了大部分资源,这就是当前矿产资源配置的总体格。
中国
矿产资源不仅是中国经济发展的基础,而且是国家的。我国只有钨、稀土等少数几种矿能满足国内需求,大部分矿产资源相对贫乏、像石油、富铁矿、铜矿、铬铁矿、铝、富锰、钾盐、等大宗用量的支柱性矿产则严重短缺。无法满足我国人口增长和经济发展的巨大需求。
开放以来,随着中国加入WTO, 由于资源危机意识薄弱、缺乏战略层面的规划和调控,一些人受政府应只考虑税收增长,只要在中国当地政府缴税就是中国企业的错误思想引导下,单纯追求经济增长速度,过度强调出口创汇,盲目引资。使我国矿产资源严重流失。
专家估算照目前的开采速度,金矿还可支撑开采15年,银矿20年,在有二十年,江西的稀土资源矿将消失,世界储备量大的钨矿资源也将消失,在有三十年,世界大的稀土矿的包头白云鄂博矿藏将消失。铜矿31年,镍矿46年,石油30年,而其余大部分矿物资源也都在百年以内开采完毕。以后,我们拿什么留给后人。
2008年12月30日,纪念有金属工业开放30周年大会在全国政协礼堂隆重召开。工业和信息化部副部长苗圩强调坚持开放的方向不动摇,坚持不断地深化,调整体制机制以适应社会主义市场经济体制的要求,发挥企业的主体和作用,全面提升我国有金属工业合作的层次、规模和水平。中国有金属工业协会会长、书记康义指出,开放30年来,我国有金属工业成功实现了从高度计划经济体制到社会主义市场经济体制的转变;从封闭、半封闭到开放的转变。
早在2000年9月28日,国土、国家计委、国家经贸委、、外经贸部、国家工商行政管理六部门颁布意见,提出进一步开放非油气资源探矿权、采矿权市场,允许外商独资进行勘查,允许外商购买国有企业的探矿权、采矿权,并可以依法转让。
此后不久,制定了实施西部大开发的,进一步扩大外商投资领域。云南、四川、陕西等重要西部矿业省份,还制定了具体的甚至是更为优惠的外商投资勘查开采矿产资源的地方法规。同时,我国黄金产业的“十五”发展计划中明确提到,要引进外资开发国内黄金资源。
贵州黔西南布依族苗族自治州的烂泥沟金矿、辽宁营口市盖县的猫岭金矿、云南东川播卡金矿,这三大金矿目前已探明储量均超过100吨,远景储量分别为150 吨、300吨、400吨,被国土称为“世界级金矿”。现三大金矿分别为澳大利亚的澳华黄金、加拿大的曼德罗矿业公司、加拿大的西南资源公司掌控,外方控股比例分别高达85%、79%、90%。这三大金矿外资控股的方式比较相似,多是中方相关地质勘查部门以采矿和勘查等为合作条件出资,对方以资金出资。如云南播卡金矿是加拿大西南资源公司与核工业西南地质209大队合作,在昆明成立中外合作企业云南金山矿业有限公司。该公司投资总额401 万美元,注册资金301万美元,209地质大队以矿权为条件入股,西南资源公司以301万美元为条件。
加拿大的AFCAN公司间接控制了青海滩涧山金矿,它通过其全资子公司TJS有限公司持有大柴旦矿业有限公司85%的股份,中方合作方为青海海西州大柴旦金矿和青海地质勘查大队。该金矿项目第二期也已开工,建设规模为年处理矿石80万吨,年产黄金3吨多。
第三大黄金公司南非安格鲁阿山帝黄金有限公司与四川省地矿在成都签署协议,计划未来五年投入约两亿元(外方将在5年勘查合作期中分年度投入资金约2600万美元)在四川平武地区进行风险勘探,寻找金矿。据介绍,这将是继四川省地矿与世界500强企业南非英美资源集团子公司英铂公司签定中南铂镍矿资源风险勘探合同后,中国和南非在四川的又一重要合作项目。
2007安邦集团日前公布的一份报告指出,正当中国为能源、矿产资源短缺等问题大伤脑筋之时,越来越多的韩国人的身影出现在中国的各处矿山上,他们瞄准了各种矿产,包括稀土等中国的战略资源。据悉,为了重点开发中国的矿产资源,在过去几年里,韩国人和为他们提供合作的中国勘探人员一起,已经跑遍了大半个中国,甚至编出了让专家吃惊的700页的中国西部7省矿业资料。除了一些规模较小的公司之外,韩国大的几家财团,如SK、三星、LG等,也先后加入开发中国资源的“角斗场”。其实早在2004年,三星物产就在矿业公社的鼓励下投资2800万美元与青海西部矿业合作开发矿产项目。今年以来,韩国SK集团了山西北方铜业公司的铜矿峪矿山及冶炼厂45%股份,三星正与中石油及法国道达尔共同开发内蒙古鄂尔多斯盆地苏南里格气田项目。与此同时,韩国还制订了投资中国四大矿种的战略,即在陕西、山东、内蒙古等地重点投资烟煤;在湖南、云南、青海等地投资锌矿;韩国矿业振兴公社将开展荧光粉、研磨剂和永磁的投资工作,主要在内蒙古、陕西;韩国对菱镁矿、黑铅、磷矿石等非金属的大众依赖度加深,有必要投资建设当地加工工厂,主要将在辽宁、山东、湖北、河北等地投资。
有金属
1、根据电视台经济半小时栏目2008年5月6日报道,贵州烂泥沟金矿以及云南播卡金矿都是储量在100吨以上的世界级金矿。被外资以低价圈占,同时,外资公司在当地开采金矿能享受西部免税优惠,国家光税费一块就要损失1.2亿元。而且它们的开采还对当地环境造成逆转的破坏。
2、钨矿资源是中国的,抗日战争初期,德国为了获得中国的钨矿,不肯支持结盟的日本侵华,竭力在中日之间调停,二战时期,由于从土耳其钼矿的渠道被切断,从中国钨矿的渠道被切断,纳粹德国军事工业受到严重影响。无力支撑大规模装甲作战。希特勒曾哀叹:“要是再给我一万吨钨砂,就可以征服俄罗斯”。因为没有钨就无法进行战争。钨的化学性能稳定,,熔点高达3400℃,居金属之首,沸点5555℃,密度为19.3克/厘米3。为钢的2.5倍与黄金相当。钨的硬度高、钨耐蚀性好,在室温下与浓度的酸和碱都不起作用。加入钨后钢的硬度会有大的提高,在金属加工领域的刀具材料高速钢就是含钨的合金。没有钨的话,直接导致金属加工能力瘫痪,由于钨能耐高温,宇航工业用作燃气轮机,火箭喷嘴,喷管,离子火箭发动机的热离解器;核子工程用钨作盛液态金属的容器,热离子交换器等.工业中,比如枪、炮的发射管及穿甲弹的弹丸中都会用到钨的合金。钨合金的机械性能与贫铀相差无几, 且没有放射性,世界钨工业所消耗的80%至90%的钨资源都是来自中国。
由于长期过度滥采,管理混乱,中国的钨矿资源已濒临枯竭。据钨业界人士分析,原有金属总公司直属的18个大中型矿山,其中生产服务年限10年以下的有9个。这9个矿山年产钨精矿1万t以上,预计七八年后即将消失。现有10个大型黑钨矿山,是钨资源优势的骨干矿山,其中8个矿山已开采了几十年进入到中晚期,还有两个黑钨矿山储量虽大,但开采品位低,堪当后备基地。我国白钨矿虽然储量多,但贫矿多,达不到矿山保本的品位,开发利用。
3、金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,钼作为生产各种合金钢的添加剂,含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。
钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。我国钼的储量居世界第二,占供应量的24%。
4、铟在地壳中含量低,全世界铟的地质储量仅为1.6万吨,约为黄金储量的1/6。
铟在电子电信、光电领域、航空航太、国防、通讯等领域起着的作用,铟广泛用于制造液晶电视、计算机和手机显示器。生产高灵敏导弹导引头,世界芯片巨头英特尔已经发布了运算速度将提升50%的下一代标准半导体晶体管--锑化铟晶体管。目前,日本、韩国、美国等经济发达国家正在加紧对铟的战略储备。我国是世界大的产铟国和出口国,原生铟产量占60%以上。80%都出口给日韩,定价权也在他们手里。2005年5月,世界上个铟金属交易中心在柳州成立。柳州市的想法是:树立以资源换技术的新观念,模式,主动与日本、美国、英国、法国等对铟下游产业发达国家的对接,打开国内对铟下游产业的应用市场。
5、稀土金属元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,人们常把不溶于水的固体氧化物称为土,又很稀少,因而得名为稀土。稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。
由于稀土具有的巨大价值,加上我国稀土产品出口价格低廉,近年来西方发达国家纷纷大量我国稀土产品加以囤积。美国、日本,韩国、澳大利亚、加拿大等部分拥有稀土矿的国家实行限制或停止开发本国的稀土矿,转而从我国作为战略储备。日本从我国的稀土矿产占其总量的比例高达83%。由于境内外资企业在我国购买稀土原料、初级产品不受出口配额限制,日本等国近年来在我国稀土资源区(内蒙古包头)大规模投资设厂,实质是变相获取我国稀土原料。内蒙古包头市是世界大的稀土产区,外国合资公司超过10家,其中包括日本昭和、三德和美国OEC等外企。
中国许多稀有金属以占世界20%的储备供应着80%的消耗。照此速度,20年后,一些具有战略意义和关系到国防的稀有金属将在中国消失。
希望
近几年,搞地质出身的温家宝当上总理后,我国对矿产资源加强宏观调控,对全国矿产资源加强管理。但是,外资控制的我国世界级金矿问题如何解决?外资控制的我国其他资源问题如何解决?没有资源,我们的未来又在那里?
2009年1月1日出版的新年期《求是》杂志,发表了总书记、国家主席、主席胡锦涛的重要文章:《努力把贯彻落实科学发展观提高到新水平》。
文章指出,一些地方事故频发,甚至存在单纯追求增长速度、以牺牲资源环境为代价换取经济一时增长的现象。
个人认为各级政府都应以对民族,对历史负责的态度,认真学胡锦涛总书记《努力把贯彻落实科学发展观提高到新水平》一文,切实转变发展方式,走出一条适合我国国情的资源节约型的经济发展的新路子。再也不能搞过去那种以巨大的资源消耗和环境破坏为代价的增长。这就要大力依靠科学,发展知识经济。
废钼回收的主要来源与分类
废钼的回收来源多样,主要包括工业生产废料、报废设备和消费后废品三大类。工业废料如钼合金切削屑、轧制废料和废钼电极,通常纯度较高,回收价值大;报废设备中的耐热部件、航空发动机叶片等含钼部件需经过拆解和分选;消费后废品如废旧电子元件(如半导体散热基板)和废弃化工催化剂则需化学提取。根据钼含量和杂质水平,废钼可分为高品位(Mo>90%)和低品位(Mo<50%),不同类别对应不同的回收工艺和定价标准。
钼是一种化学元素,符号为Mo,原子序数42,是一种银白的过渡金属。钼具有高强度、高熔点、耐腐蚀、耐磨研等特性,这些特性使得钼在众多领域都有广泛的应用。
在金属市场中,钼虽然不像黄金、白银那样为大众所熟知,但它却有着举足轻重的。从产量和储量来看,钼资源储量相对集中,主要分布在美国、中国、智利等国家。中国是世界上钼资源为的国家之一,同时也是大的钼生产国和消费国。
钼在钢铁工业中扮演着的角。它是一种优良的合金元素,能够提高钢的强度、硬度、韧性和耐热性等性能。在不锈钢中加入钼,可以增强其抗点蚀和缝隙腐蚀的能力,广泛应用于化工、海洋等领域。在工具钢和高速钢中,钼能提高刀具的耐磨性和切削性能,使得加工效率大幅提升。以下是钼在不同类型钢铁中的作用对比:
钢铁类型
钼的作用
不锈钢
增强抗点蚀和缝隙腐蚀能力
工具钢和高速钢
提高耐磨性和切削性能
耐热钢
提高高温强度和抗氧化性能
除了钢铁工业,钼在电子、化工、能源等领域也有重要应用。在电子行业,钼因其良好的导电性和热稳定性,被用作电子管、晶体管和集成电路的电材料。在化工领域,钼化合物是重要的催化剂,可用于石油加氢精制、有机合成等过程。在能源领域,钼基合金被用于制造燃气轮机的叶片、火箭发动机的喷嘴等高温部件。
从市场角度来看,钼的价格波动受到多种因素的影响,包括经济形势、钢铁行业的需求、钼矿的供应情况等。当经济增长强劲,钢铁需求旺盛时,钼的价格往往会随涨;反之,当经济增长放缓,钢铁行业需求下降时,钼的价格也会受到抑制。此外,钼矿的开采和生产受到资源储量、开采成本、要求等因素的制约,供应的稳定性也会对价格产生影响。
总的来说,钼作为一种重要的战略金属,在金属市场中具有不可替代的。它的广泛应用和性能,使得其在推动现代工业发展和科技进步方面发挥着重要作用。随着经济的不断发展和科技的不断进步,钼的需求有望继续保持增长态势。
钼(Molybdenum),化学符号Mo,原子序数为42,是一种过渡金属元素,为人体及动植物的微量元素。钼单质为银白金属,硬而坚韧。人体各种组织都含钼,在人体内总量约为9mg,肝、肾中含量高。
1782年,瑞典的埃尔姆,用亚麻子油调过的木炭和钼酸混合物密闭灼烧,而得到钼。
1953年确知钼为人体及动植物的微量元素。
主要矿物是辉钼矿(MoS2)。
天然辉钼矿MoS2是一种软的黑矿物,外型和石墨相似。18世纪末以前,欧洲市场上两者都以“molybdenite”名称出售。1779年,舍勒指出石墨与molybdenite(辉钼矿)是两种不同的物质。他发现硝酸对石墨没有影响,而与辉钼矿反应,获得一种白垩状的白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。他认为这种白粉末是一种金属氧化物,用木炭混合后强热,没有获得金属,但与硫共热后却得到原来的辉钼矿。
1782年,瑞典一家矿场主埃尔姆从辉钼矿中分离出金属钼,命名为molybdenum,元素符号定为Mo。汉语译成钼。它得到贝齐里乌斯等人的承认。
钼位于门捷列夫周期表第5周期、第VIB族,为一过渡金属元素,钼原子序数42,原子量95.95,原子中电子排布为:1s22s22p63s23p64s23d104p64d55s1。由于价电子层轨道呈半充满状态,钼介于亲石元素(8电子离子构型)和亲铜元素(18电子离子构型)之间,表现典型过渡状态。戈尔德施密特在元素的地球化学分类里将它称亲铁元素。自然界里,钼有七个稳定的天然同位素,它们的核子数及其在天然混合物中所占比例如表所列。
同位数名称 92Mo 94Mo 95Mo 96Mo 97Mo 98Mo 100Mo ∑
各占比例(%)原子量 15.84 9.04 15.72 16.53 9.46 23.78 9.63 100
91.9063 93.9047 94.9058 95.9046 96.9058 97.9055 99.9076 95.95
另据文献记载,已发现第八种天然同位素的存在。此外,还发现钼有十一种人造放射性同位素,因资料数据不详,此不赘述。
钼为银白金属,钼原子半径为0.14nm,原子体积为235.5px/mol,配位数为8,晶体为Az型体心立方晶系,空间群为Oh9,至今还没发现它有异构转变。常温下钼的晶格参数在0.31467~0.31475nm之间,随杂质含量而变化。钼熔点很高,在自然界单质中名列第六,被称作难熔金属。钼的密度为10.23g/cm3,约为钨的一半(钨密度19.36g/cm3)。钼的热膨胀系数很低;钼的热传导率较高。钼电阻率较低:0℃时为5.17×10-10Ω·cm;800℃时为24.6×10-10Ω·cm;2400℃时为72×10-10Ω·cm。钼属顺磁体,钼的比热在25℃时为242.8J/(kg·K)。钼的硬度较大,摩氏硬度为5~5.5。钼在沸点的蒸发热为594kJ/mol;熔化热为27.6±2.9kJ/mol;在25℃时的升华热为659kJ/mol。
物质 碳(C) 钨(W) 铼(Re) 锇(Os) 钽(Ta) 钼(Mo)
熔点(℃) 3650~3697 3410 3180 3045 2996 2622
沸点(℃) 4827 5660 5627 5027±100 5425±100 5560
钼的原子半径、离子半径与钨、铼的很接近。
原子半径(nm) 4离子半径(nm) 6离子半径(nm)
钼 0.139 0.068 0.065
钨 0.14 0.068 0.065
铼 0.138 0.068 0.065
钼原子的电子排列体现了典型过渡元素的性质:次外层的五个4d轨道、外层的一个5s轨道上电子均呈半弃满状态。钼原子外层电子电离电位为:
外层电子(个) 1 2 3 4 5 6 7 8
电离电位(eV) 7.2 15.17 27 46.53 55.6 71.7 132.7 153.2
钼要丢掉七个或八个电子是困难的。这决定了钼的化学性质比较稳定。常温或在不太高的温度下,钼在空气或水里是稳定的。钼在空气中加热,颜开始由白()转暗灰;温升至520℃,钼开始被缓慢氧化,生成Mo2O3;温升至600℃以上,钼迅速被氧化成MoO3。钼在水蒸气中加热至700~800℃便开始生成MoO2,将它进一步加热,二氧化钼被继续氧化成三氧化钼。钼在纯氧中可自燃,生成三氧化钼。钼的氧化物已见于报道的很多,但不少是反应中间产物,而不是热力学稳定相态。的只有九种,其结构与转化温度如表。
氧化物 生成温度范围(℃) 结晶结构
MoO2 菱形
Mo4O11 单斜系
Mo4O11 615~800 正斜形
Mo17O47 560
Mo5O14 530
Mo8O23 650~780
Mo18O52 600~750 三斜系
Mo9O26 750~780 单斜系
MoO3 菱形
另外,在生成MoO2前还有三种中间产物Mo2O3,MoO和Mo3O,但都还未能制造出它们的纯产物。
钼的这一系列氧化物中,除高价态的MoO3为酸性外,其余氧化物均为碱性氧化物。钼重要的氧化物是MoO3和MoO2。
MoO2分子量为127.94。纯MoO2呈暗灰、深褐粉末状。25℃时,MoO2的生成热为550kJ/mol,密度为6.34~6.47g/cm3。MoO2呈金红石单斜结晶构造,单位晶体(晶胞)由两个MoO2分子组成,晶格参数为a=0.5608nm,b=0.4842nm,c=0.5517nm,d=11.975nm。MoO2可溶于水,易溶于盐酸及硝酸,但不溶于氨水等碱液里。在空气、水蒸气或氧气中继续加热MoO2,它将被进一步氧化,直至生成MoO3。在真空中加热到1520~1720℃,固态MoO2部升华而不分解出氧,但大部分MoO2分解成MoO3气体和固态Mo。Jette.E.R(1935年)报道:MoO2在1980℃±50℃、0.1MPa(惰性气体)的条件下分解成钼和氧。MoO2是钼氧化的产物。
MoO3为淡绿或淡青的白粉末。分子量为143.94。25℃时,MoO3的生成热为668kJ/mol,密度为4.692g/cm3,熔点为795℃,沸点为1155℃.在低于熔点的温度已开始升华.在520~720℃时,升华呈气体的三氧化相为MoxO3x分子混合物,其中x=3~5,以x=3为主。MoO3微溶于水而生成钼酸。18℃,MoO3溶解度为1.066%,70℃时为2.05%。溶于水的三氧化钼与水按不同比例组成一系列同多酸,nMoO3·mH2O,其中n≥m。这一系列同多酸中比较重要的有:钼酸H2MoO4(n=m=1),仲钼酸H6Mo7O24,(n=7,m=3),四钼钼酸H2Mo4O13(n=4,m=1)。这些同多酸可看作两个或多个同种简单含氧酸分子缩水而成。比如7H2MoO4←→H6Mo7O24 4H2O。X分析发现,Mo7O24的结构由七个MoO6正八面体相连而成。MoO3易溶于氨水、碱金属碱液中,生成与同多酸对应的盐。MoO3在碱性介质(pH>10)中往往呈MoO4存在,而在酸性介质中,它往往以Mo7O24(pH≤6~8)或Mo8O24(pH=1.5~2.9)形式存在。作为钼的重要化工产品——工业钼酸铵,也正是这一系列同多酸的铵盐混合物。
室温下,钼能与F2反应。250℃钼开始与Cl2反应,700~800℃钼可与Cl2反应生成MoCl2。在白热温度下,钼能与Br2反应。钼与卤素反应产物可以是MoX6(如MoF6),亦可是MoO2X2(如MoO2Cl2)或者是MoOX4(如MoOCl4)或者是MoX。600℃以上,钼在N2中开始脆化。1500℃以上钼才开始与N2反应,2400℃以上钼与N2反应生成氮化物。但是,直至熔解(2622℃±10℃),钼都不能与H2反应。因而,工业上通常用H2还原MoO3以生产金属钼粉。反应过程可能是:450~500℃时,MoO3经H2还原,经生成Mo5O14、Mo17O47、Mo4O11等中间氧化态后生成MoO2;1000~1100℃时,H2进一步将MoO2还原成金属钼粉。钼在CO2中加热,可以被氧化为MoO3;而反应产物MoO3与CO又可反应,再度还原成Mo:Mo 3CO2←→MoO3 3CO。钼粉或氧化钼在CO或者CH4、H2混合物中共同加热可以生成碳化钼。600℃时生成物为Mo2C,它性脆、密度为8.9g/cm3,熔点为2380℃;而800℃时的生成物为MoC,它的密度为8.4g/cm3。
钼在常温下不与HF、HCI、稀HNO3、稀H2SO4及碱溶液反应。钼只溶于浓HNO3、王水或热而浓的H2SO4、煮沸的HCI中。
钼的生物属性也很重要,它不仅是植物也是动物必不可少的微量元素。钼是植物体内固氮菌中钼黄素蛋白酶的主要成份之一;也是植物硝酸还原酶的主要成份之一;还能激发磷酸酶活性,促进作物内糖和淀粉的合成与输送;有利于作物早熟。钼是七种重要微量营养元素之一。钼还是动物体内肝、肠中黄嘌呤氧化酶、醛类氧化酶的基本成份之一,也是亚硫酸肝素氧化酶的基本成份。研究表明,钼还有明显防龋作用,钼对尿结石的形成有强烈抑制作用,人体缺钼易患肾结石。一个体重70kg的健康人,体内含钼9mg。对于人类,钼是第二、第三类过渡元素中已知唯一对人必不可少的元素,与同类过渡元素相比,钼的毒性低,甚至可认为基本。当然,过量的食入也会加速人体动脉壁中弹性物质——缩醛磷脂——氧化。所以,土壤含钼过高的地区,癌症发病率较低但痛风病、全身性动脉硬化的发病率较高。而食入含钼过量的饲草的动物,尤其长角动物易患胃病。
膳食及饮水中的钼化合物,易被吸收。经口摄入的可溶性钼酸铵约88%-93%可被吸收。膳食中的各种含硫化合物对钼的吸收有相当强的阻抑作用,硫化钼口服后只能吸收5%左右。钼酸盐被吸收后仍以钼酸根的形式与血液中的巨球蛋白结合,并与红细胞有松散的结合。血液中的钼大部分被肝、肾摄取。
在肝脏中的钼酸根一部分转化为含钼酶,其余部分与蝶呤结合形成含钼的辅基储存在肝脏中。身体主要以钼酸盐形式通过肾脏排泄钼,膳食钼摄入增多时肾脏排泄钼也随之增多。因此,人体主要是通过肾脏排泄而不是通过控制吸收来保持体内钼平衡。此外也有一定数量的钼随胆汁排泄。
钼作为3种钼金属酶的辅基而发挥其生理功能。钼酶催化一些底物的羟化反应。黄嘌呤氧化酶催化次黄嘌呤转化为黄嘌呤,然后转化成尿酸。醛氧化酶催化各种嘧啶、嘌呤、蝶啶及有关化合物的氧化和。亚硫酸盐氧化酶催化亚硫酸盐向硫酸盐的转化。有研究者还发现,在体外实验中,钼酸盐可保护肾上腺皮质激素受体,使之保留活性。据此推测,它在体内可能也有类似作用。有人推测,钼酸盐之所以能够影响糖皮质激素受体,是因为它与一种称为“调节素”的内源性化合物相似。
2000年中国营养学会根据国外资料,制订了中国居民膳食钼参考摄入量,适宜摄入量为60μg/d;高可耐受摄入量为350μg/d。
我国钼矿分布就大区来看,中南占全国钼储量的35.7%,居首位。其次是东北19.5%、西北14.9%、华东13.9%、华北12%,而西南仅占4%。就各省(区)来看,河南储量多,占全国钼矿总储量的29.9%,其次陕西占13.6%,吉林占13%。另外储量较多的省(区)还有:山东占6.7%、河北占6.6%、江西占4%、辽宁占3.7%、内蒙古占3.6%。以上8个省(区)合计储量占全国钼矿总保有储量的81.1%,其中前三位的河南、陕西、吉林三省就占56.5%。下表展示出了我国主要的钼矿床及其开发利用情况。
中国钼矿主要产地一览表
编号 矿床 位置 规模 品位(Mo%) 利用情况
1 五道岭钼矿 黑龙江省阿城区 中型 0.167 未采
2 大黑山钼矿 吉林省永吉县 大型 0.066 已采
3 杨家杖子钼矿 辽宁省葫芦岛市 大型 0.141 已采
4 兰家沟钼矿 辽宁省葫芦岛市 大型 0.141 已采
5 撒岱沟门钼矿 河北省丰宁县 大型 0.076 未采
6 野弧钼矿 河北省涞水县 中型 0.087 未采
7 大科庄钼矿 北京市延庆县 中型 0.1 未采
8 后峪钼矿 山西省繁峙县 中型 0.061 未采
9 尚家庄钼矿 山东省栖霞县 中型 0.053 未采
10 金堆城钼矿 陕西省华县 大型 0.099 已采
11 黄龙铺钼矿 陕西省洛南县 大型 0.083 未采
12 上房沟钼矿 河南省栾川县 大型 0.14 已采
13 雷门沟钼矿 河南省嵩县 大型 0.073 未采
14 石坪川钼矿25号脉 浙江省青田县 中型 0.19 已采
15 赤路钼矿 福建省福安县 中型 0.07 已采
16 翠宏山铁多金属矿 黑龙江省逊克县 中型 0.122 未采
17 多宝山铜钼矿 黑龙江省嫩江县 中型 0.016 未采
18 肖家营子钼矿 辽宁省喀喇沁左翼蒙古族自治县 中型 0.225 已采
19 小寺沟铜钼矿 河北省平泉县 中型 0.086 已采
20 大湾锌钼矿 河北省涞源县 大型 0.117 未采
21 邢家山钼矿 山东省烟台市 大型 0.08 未采
22 三道庄钼矿 河南省栾川县 大型 0.115 已采
23 南泥湖钼矿 河南省栾川县 大型 0.076 未采
24 夜长坪钼矿 河南省卢氏县 大型 0.133 未采
25 下桐岭钨钼铋矿 江西省分宜县 中型 0.054 已采
26 德行铜厂矿 江西省德兴市 大型 0.011 已采
27 富家钨铜矿 江西省 大型 0.033 已采
28 宝山铅锌银矿 湖南省桂阳县 中型 0.146 已采
29 黄沙坪铅锌矿 湖南省桂阳县 中型 0.042 未采
30 柿竹园钨锡钼铋矿 湖南省郴县 中型 0.064 已采
31 大浒镍钼矿 湖南省慈利县 中型 0.595 未采
32 天门山矿区大坪 湖南省大庸县 中型 0.346 已采
33 玉龙铜钼矿 西藏自治区江达县 大型 0.028 未采
34 行洛坑钨钼矿 福建省清流县 中型 0.024 已采
35 马厂阱铜钼矿 云南省祥云县 中型 0.08 未采
36 大宝山钼矿 广东省曲江区 中型 0.076 未采
37 白石嶂钼钨矿 广东省五华县 中型 0.116 停采
钼与钨一样是一种难熔稀有金属。自1778年瑞典科学家C.W.SCHEELE发现钼元素之后,经过十余年努力M.MOISSAN才用电炉制得金属钼,使人类次得到这种具有许多优良物理化学和机械性能的金属。钼的熔点为2620℃,由于原子间结合力强,所以在常温和高温下强度都很高。它的膨胀系数小,导电率大,导热性能好。在常温下不与盐酸、氢氟酸及碱溶液反应,仅溶于硝酸、王水或浓硫酸之中,对大多数液态金属、非金属熔渣和熔融玻璃亦相当稳定。因此,钼及其合金在冶金、农业、电气、化工、和宇航等重要部门有着广泛的应用和良好的前景,成为国民经济中一种重要的原料和不可替代的战略物质。钼在地球上的蕴藏量较少,其含量仅占地壳重量的0.001%,钼矿总储量约为1500万吨,主要分布在美国、中国、智利、俄罗斯、加拿大等国。我国已探明的钼金属储量为172万吨,基础储量为343万吨,仅次于美国而居世界第二位。钼矿集中分布在陕西、河南、吉林和辽宁等四省。世界上金属储量在50万吨以上的特大型钼矿共有六个,我国的河南栾川、吉林大黑山和陕西金堆城三大钼矿榜上有名。的钼资源,为我国发展钼的冶炼和加工,大力推广钼的应用,提供了为有利的条件和坚实的基础。近年来,我国钼的开采、冶炼和加工得到了迅速的发展。据资料介绍,2001年我国实际生产钼精矿72000吨,氧化钼33000吨,钼铁7600吨,各类钼酸铵9500吨,钼条1183吨,钼板坯1200吨,钼板材150吨,钼圆片40余吨,钼顶头及其他异型制品约50吨,电光源行业及机械加工钼丝31.5亿米,还有润滑剂、催化剂、颜料等化工产品数百吨。不仅如此,我国在世界钼市场中占有举足轻重的,据海关统计,2001年我国出口钼矿焙砂、钼酸盐、钼铁及其他钼制品70274吨之多,创汇达2.62亿美元。钼的消费形式以工业三氧化钼为主,约占70%,钼铁约占20%,金属钼和钼化学制品各占5%。其应用领域和分配比例大概如下:钢铁冶炼消费约占80%(其中合金钢约为43%,不锈钢约为23%,工具钢和高速钢约8%,铸铁和轧辊约为6%),化工产品约占10%,金属钼制品消费约占6%,高温高强度合金和合金约占3%,其他钼制品约为1%。由上可见钢铁工业的发展对钼的消费起着决定性的作用,但随着科学技术的发展,钼在高科技和其他领域的应用将会不断地扩大和发展。
钢铁工业:根据世界各国钼消费统计,钼在钢铁工业中的应用仍然占据着主要的位置。钼作为钢的合金化元素,可以提高钢的强度,是高温强度和韧性;提高钢在酸碱溶液和液态金属中的抗蚀性;提高钢的耐磨性和改善淬透性、焊接性和耐热性。钼是一种良好的形成碳化物的元素,在炼钢的过程中不氧化,可单独使用也可与其他合金元素共同使用。钢的耗钼量在有规律地增长,每吨钢的钼消耗量已达到0.201公斤的水平。
钼与铬、镍、锰和硅等可制造不同类型的不锈钢、工具钢、高速钢和合金钢等。所制成的不锈钢有良好的耐腐蚀性能,可用于石油开采的耐腐蚀钢管,一种加钼约6%的不锈钢还可取代钛用于海水淡化装置、
远洋船舶、海上石油及天然气开采管道。这类不锈钢还可以用于汽车外壳、污水处理设备等。含钼工具钢的效率是钨工具的两倍,性能优良,成本低廉且重量较轻。钼系列高速钢具有碳化物不均匀性、耐磨、韧性好、高温塑性强等优点,适用于制造成型刀具。含钼合金钢可用于制造机床结构部件,工业车辆和推土设备。在轧制状态下有微细珠光体组织的含钼合金钢,是铁轨和桥梁建设中的重要钢材。
钼作为铁的合金添加剂,有助于形成珠光体的基体,能改善铸铁的强度和韧性,提高大型铸件组织的均匀性,还可以提高热处理铸件的可淬性。含钼灰口铸铁具有很好的耐磨性,可作重型车辆的闸轮和刹车片等。
农用肥料:钼是植物体内的“微量元素”之一,约占植物干物量的0.5ppm左右,是不可缺少和不可替代的。近年来国内外广泛地采用钼酸铵作为微量元素肥料,能显著地提高豆类植物、牧草及其他作物的质量和产量。这主要是钼能促进根瘤菌和其他固氮生物对空气中氮的固定,并将氮元素进一步转化成植物所需的蛋白质。钼也能促进植物对磷的吸收和在植物体内发挥其作用。钼还能加快植物体内醣类的形成与转化,提高植物叶绿素的含量与稳定性,提高维生素丙的含量。不仅如此,钼还能提高植物的抗旱抗寒能力以及抗病性。
施用钼肥的特点是用量少,收效大,成本低,是提高农业收成是使大豆丰收的一项重要措施。钼在农业上的广泛应用,也为我国钼生产工厂的废水、废渣及低品位矿的综合利用,开辟了一条新的途径。电子电气钼有良好的导电和高温性能,是与玻璃的热膨胀系数其相近,广泛地用于制造灯泡中螺旋灯丝的芯线、引出线、挂钩、支架、边杆及其他部件,在电子管中做栅和阳支撑材料。在超大型集成电路中钼用作金属氧化物半导体栅,把集成电路安装在钼上可以消除“双金属效应”。超薄型无缝钼管(约15μm)可用作高清晰度电视机显象管的阳支架,这种电视机的图象扫描线达1125条,比一般的电视机提高2倍。钼圆片还可作功率晶体管隔热屏和硅整流器的基板和散热片。
在现代电子工业中除使用纯钼外,Mo-Re合金可作电子管和特种灯泡的结构材料,Mo-50Re和TZM合金还可作高功率微波管和毫米波管中的热离子阴结构元件,其工作温度可达到1200℃,电流密度可达10安培/厘米2。作为引出线的的纯钼丝再结晶温度低,在高温下易出现脆化,影响使用寿命,近年来,有人研制出添加Si、k和C等元素,以提高再结晶温度,生产出“高温钼丝”。采取在氧化钼生产过程中添加稀土元素钇、铈、镧等,更能有效地提高再结晶温度,克服材料高温脆化问题。含0.1-0.3%锆、0.1%钪的钼丝,在1200℃氮化处理,使钪弥散到整个合金中去,这种钼丝在20℃时抗拉强度可达到1400百万帕斯卡。
模具工业的迅速发展,使电火花加工技术得到普遍的应用,钼丝是理想的电火花线切割机床用电丝,可切割各种钢材和硬质合金,加工形状其复杂的零件,其放电加工稳定,能有效地提高模具的精度。以上是钼丝两种为广泛的用途,灯泡制造业的发展和模具制造业的崛起突飞猛进。据中国照明协会统计,2001年全国生产钼丝达到31.5亿米,实际产量估计达到40亿米,消耗将近800吨钼条,其数量十分可观。其中线切割用钼丝产量超过20亿米,占钼丝总量的一半以上,其市场发展前景十分令人乐观。
钨-铜假合金广泛应用电火花切削工具电,然而近年来研究以钼取代钨作电,结果表明,钨基和钼基电随铜(≤50%重量)的含量而变的耐蚀性是不一样的。在加热脉冲和机械负荷脉冲存在时,这种耐腐蚀性主要取决于脆裂过程,钼的延-脆性转变温度较钨低,所以脆性小,耐蚀性能较强。钼-铜、钼-银假合金具有耐烧蚀性和良好的导电性,可以作为空气开关、高压开关和接触器的触点。钼-铜复合薄膜在连续的铜机体上夹带大量的离散钼粒子,显微组织均匀,有良好的穿厚导热性和导电性,可作金属芯子应用于多层电路板中。
近,还研制出可变的三氧化钼,这种材料在强光照射下会改变颜,且可轻易还原,可用于电子计算机光存储元件及多次使用的复印材料。
汽车喷涂:钼的熔点高达2620℃,且有良好的高温性能和耐腐蚀性能,钼与钢铁结合力强,因而是汽车部件生产中主要的热喷涂材料。汽车部件一般采用钼丝高速火焰喷涂,喷枪的气体混合喷射装置产生高温燃气燃烧,设计的燃烧室和气体喷射混合室,使钼丝在熔化前,以高的速度喷涂在工件的表面上,喷射钼的致密度可达99%以上,结合强度接近10公斤/mm2。这一工艺过程能有效地改善受磨面的耐磨性,也提供了一个可以浸渍润滑油的多孔表面。它广泛地应用于汽车工业以提高活塞环、同步环、拨叉和其他受磨部件的性能,也用于修复磨损的曲轴、轧辊、轴杆和其他机械部件。据资料介绍喷涂钼丝欧洲市场年销售量可达1000吨,美国每年消耗量也达600吨左右,日本每年也消耗钼丝30-40吨,我国喷涂钼丝市场容量尚小于每年30吨。但随着我国汽车工业的发展,汽车齿轮和其它部件的热喷涂将有较大发展,喷涂钼丝的销售量将大幅度增长。
高温元件:钼的纯度高、耐高温、蒸汽压低等特性,使之常常被用来制造高温炉的发热体和结构材料。在钨钼及硬质合金生产过程中,大都采用钼丝加热的方式制作还原炉和烧结炉,部份铁制品连续烧结还采用钼杆加热排作发热体,钼杆加热排以钼钩悬挂于炉子的两侧。这类炉子一般为还原性气氛或非氧化性气氛,在氢气和分解氨中钼丝可使用至接近熔点,氮气中可使用至2000℃。高于1700℃使用时,可采用再结晶温度更高、强度的TZM合金或钼镧合金作发热体。钼在熔化的石英中有很好的抗烧蚀性能,在玻璃工业中用作通电熔融电,每生产一吨玻璃钼电仅损失7.8克,使用寿命可长达一年多。除作电外,钼还用作玻璃熔化高温结构材料,如导槽、管子、坩埚、流口以及稀土冶炼的搅拌棒。以钼代铂在玻璃纤维拉丝炉上使用效果良好,大大降低了生产成本。新近研制出的核燃料烧结炉采用钼网加热,用ф0.8mm钼丝编织成三相网状加热器,工作温度可达1800-2000℃。除此之外,钼及其合金还可以作热等静压的炉架、隔热屏、烧结和蒸涂的料舟、SmCo磁体及二氧化铀烧结的垫板,热电偶及其保护套管等。
膳食中的钼很易被吸收。但硫酸根(SO42-)因可与钼形成硫酸钼(molybdenum sulfate)而影响钼的吸收。同时硫酸根还可抑制肾小管对钼的重吸收,使其从肾脏排泄增加。因此体内含硫氨基酸的增加可促进尿中钼的排泄。钼除主要从尿中排泄外,尚可有小部分随胆汁排出。
钼缺乏主要见于遗传性钼代谢缺陷,尚有报道全肠道外营养时发生钼不足者。钼不足可表现为生长发育迟缓甚至死亡,尿中尿酸、黄嘌呤、次黄嘌呤排泄增加。
过量的钼对人体生命健康危害大。它能够使体内能量代谢过程出现障碍,心肌缺氧而灶性坏死,易发肾结石和尿道结石,增大缺铁性贫血患病几率,引发龋齿。
人和动物机体对钼均有较强的内稳定机制,经口摄入钼化物不易引起中毒。据报告,生活在亚美尼亚地区的居民每日钼摄入量高达10~15mg;当地痛风病发病率高,被认为与此有关。钼冶炼厂的工人也可因吸入含钼粉尘而摄入过多的钼。据调查,这些工人的血清钼水平、黄嘌呤氧化酶活性、血及尿中的尿酸水平均显著高于一般人群。
钼在地壳中的平均丰度为1.3ppm,多存在于辉钼矿、钼铅矿、水钼铁矿中。矿物燃料中也含钼。天然水体中钼浓度很低,海水中钼的平均浓度为14微克/升。钼在大气中主要以钼酸盐和氧化钼状态存在,浓度很低,钼化物通常低于1微克/米。
环境中的钼有两个来源:
①风化作用使钼从岩石中释放出来。估计每年有1000吨进入水体和土壤,并在环境中迁移。钼分布的不均匀性,造成某些地区缺钼而出现“水土病”;又造成某些地区含钼偏高而出现“痛风病”(如亚美尼亚)。
②人类活动中愈来愈广泛地应用钼以及燃烧含钼矿物燃料(如煤),因而加大了钼在环境中的循环量。全世界钼产量每年为10万吨,燃烧排入环境的钼每年为800吨。人类活动加入的循环量超过天然循环量。用钼多的是冶金、电子、导弹和航天、原子能、化学等工业以及农业。对钼污染的研究还很不够。
钼在环境中的迁移同环境中的氧化和还原条件、酸碱度以及其他介质的影响有关。水和土壤的氧化性愈高,碱性愈大,钼愈易形成MoO离子;植物能吸收这种状态的钼。环境的酸性增大或还原性增高,钼易转变成复合离子,形成MoO;这种状态的钼易被粘土和土壤胶体及腐植酸固定而失去活性,不能为植物吸收。在海洋中,深海的还原环境使钼被有机物质吸附后包裹于含锰的胶体中,形成结核沉于海底,脱离生物圈的循环。
钼对温血动物和鱼类的影响较小。高含量钼对植物有不良影响,试验表明:钼浓度为0.5~100毫克/升时会对亚麻生长产生不同程度的影响;10~20毫克/升时对大豆生长有危害;25~35毫克/升时对棉花生长有轻度危害;40毫克/升时对糖用甜菜生长有危害。水体中钼浓度达到5毫克/升时,水体的生物自净作用会受到抑制;10毫克/升时,这种作用受到更大抑制,水有强烈涩味;100毫克/升时,水体微生物生长减慢,水有苦味。中国规定地面水中钼高容许浓度为0.5毫克/升,车间空气中可溶性钼高容许浓度为4毫克/立方米;,不溶性钼为6毫克/立方米。
健康危害
侵入途径:吸入、食入。
健康危害:对眼睛、皮肤有刺激作用。部分接触者出现尘肺病变,有自觉呼吸困难、全身疲倦、头晕、胸痛、咳嗽等。
毒理学资料及环境行为
急性毒性:LD50:6.1mg/kg(大鼠经口)
危险特性:其粉体遇高热、明火能燃烧甚至爆炸。与氧化剂能发生强烈反应。
燃烧(分解)产物:氧化钼。
现场应急监测方法
便携式比计(水质)
实验室监测方法
硫氰酸盐比法
火焰原子吸收法
原子吸收法
环境标准
中国(TJ36-79):车间空气中有害物质的高容许浓度4mg/m3(可溶性化合物),6mg/m3(不溶性化合物)
中国(GB/T14848-93):地下水质量标准(mg/L)Ⅰ类0.001;Ⅱ类0.01;Ⅲ类0.1;Ⅳ类0.5;Ⅴ类>0.5
中国:饮用水源水中有害物质的高容许浓度0.07mg/L
应急处理处置方法
1、泄漏应急处理
隔离泄漏污染区,周围设警告标志,切断火源。建议应急处理人员戴自给式呼吸器,穿化学防护服。使用不产生火花的工具小心扫起,避免扬尘,运至废物处理场所。用水刷洗泄漏污染区,经稀释的洗水放入废水系统。如大量泄漏,收集回收或无害处理后废弃。
2、防护措施
呼吸系统防护:作业工人佩戴防毒口罩。必要时佩戴自给式呼吸器。
眼睛防护:戴化学防护眼镜。
防护服:穿防静电工作服。
手防护:戴防化学品手套。
其他:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。注意个人清洁卫生。
3、急救措施
皮肤接触:用肥皂水及清水彻底冲洗。就医。
眼睛接触:拉开眼睑,用流动清水冲洗15分钟。就医。
吸入:脱离现场至空气新鲜处。就医。
食入:误服者饮适量温水,催吐。就医。
灭火方法:干粉。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种耐高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
钼在电子行业有可能取代石墨烯。
美国加州纳米技术研究院(简称CNSI)成功使用MoS2(辉钼,二硫化钼)制造出了辉钼基柔性微处理芯片,这个MoS2为基础的微芯片只有同等硅基芯片的20%大小,功耗低,辉钼制成的晶体管在待机情况下的功耗为硅晶体管的十万分之一,而且比同等尺寸的石墨烯电路更加廉价。而大的变化是其电路有很强的柔性,薄,可以附着在人体皮肤。
2011年瑞士联邦理工学院洛桑分校(EPFL)科学家制造出个辉钼矿微晶片(上面有更小且更的电晶体)。辉钼是未来取代硅基芯片竞争者。领导研究的安德拉斯·基什教授表示,辉钼是良好的下一代半导体材料,在制造超小型晶体管、发光二管和太阳能电池方面具有很广阔的前景。
同硅和石墨烯相比,辉钼的优势之一是体积更小,辉钼单分子层是二维的,而硅是一种三维材料。在一张0.65纳米厚的辉钼薄膜上,电子运动和在两纳米厚的硅薄膜上一样容易,辉钼矿是可以被加工到只有3个原子厚的!
辉钼所具有的机械特性也使得它受到关注,有可能成为一种用于弹性电子装置(例如弹性薄层晶片)中的材料。可以用在制造可卷曲的电脑或是能够贴在皮肤上的装置。甚至可以植入人体。
英国《自然·纳米技术》杂志就指出:单层的辉钼材料显示出良好的半导体特性,有些性能超过广泛使用的硅和研究热门石墨烯,可望成为下一代半导体材料。
纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。
钼在其它合金领域及化工领域的应用也不断扩大。例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域。由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。
钼在薄膜太阳能及其他镀膜行业中,作为不同膜面的衬底也被广泛应用。
钼酸铵(Ammonium Molybdate)
作用与应用:钼为多种酶的组成部分,钼的缺乏会导致龋齿、肾结石、克山病、大骨节病、食道癌等疾病。主要用于长期依赖静脉高营养的患者。
钼在机体的主要功能是参与硫、铁、铜之间的相互反应。钼是黄嘌呤氧化酶、醛氧化酶和亚硫酸氧化酶发挥生物活力的因子,对机体氧化还原过程中的电子传递、嘌呤物质与含硫氨基酸的代谢具有一定的影响。在这三种酶中,钼以喋呤由来性辅助因子的形式存在。钼还能抑制小肠对铁、铜的吸收,其机制可能是钼可竞争性抑制小肠粘膜刷状缘上的受体,或形成不易被吸收的铜-钼复合物、硫-钼复合物或硫钼酸铜(Cu-MoS)并使之不能与血浆铜蓝蛋白等含铜蛋白结合。
用法用量:口服,每日需用量0.1~0.15mg。
儿童每日需用量0.03~0.1mg。
【副作用】:过量的钼可引起不良反应。
【注意事项】:每日摄取量超过0.54mg,钼可增加铜从尿中排出。超过10~15mg时,则可出现痛风综合症。
在奶牛饲料中的应用量:10mg/d
以钼为基体加入其他元素而构成的有合金。主要合金元素有钛、锆、铪、钨及稀土元素。钛、锆、铪元素不仅对钼合金起固溶强化作用,保持合金的低温塑性,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼合金有良好的导热、导电性和低的膨胀系数,在高温下(1100~1650℃)有高的强度,比钨容易加工。可用作电子管的栅和阳,电光源的支撑材料,以及用于制作压铸和挤压模具,航天器的零部件等。由于钼合金有低温脆性和焊接脆性,且高温易氧化,因此其发展受到限制。工业生产的钼合金有钼钛锆系、钼钨系和钼稀土系合金,应用较多的是类。钼合金的主要强化途径是固溶强化、沉淀强化和加工硬化。通过塑性加工可制得钼合金板材、带材、箔材、管材、棒材、线材和型材,还能提高其强度和改善低温塑性。
钼是钢与合金中的重要元素,常用的含钼炉料有金属钼、钼铁,有时还可以使用氧化钼精矿来直接还原冶炼含钼钢种。钼在地壳中的自然储量为1900万吨,可开采储量860万吨。
钼-99是钼的放射性同位素之一,在医院里用于制备锝-99。锝-99是一种放射性同位素,病人服用后可用于内脏器官造影。用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中,当钼-99衰变时生成锝-99,在需要时可把锝-99从容器中取出发给病人。