青岛长期回收废钼收购厂家
废钼回收的环保意义与政策支持
钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。
引 言
随着电子及信息产业的迅猛发展,对溅射靶材的需求不断增加,同时对其技术及靶材性能的要求也在不断提高。 难熔金属钼具有高熔点(2620±20℃)、高弹性模量(280~390 GPa)、低线性热膨胀系数(5.8 ×10-6 ~ 6.2 ×10-6 / K)、高耐磨性、良好的导电/ 导热性能和热稳定性[1 - 3]。 因此,钼靶材经磁控溅射制成的钼合金薄膜是平面显示用液晶显示器面板的电或配线的关键材料。
在电子行业中,为了提高溅射效率和确保溅射薄膜的质量,要求溅射靶材具有高纯度、高致密度、晶粒细小且尺寸分布均匀、结晶取向一致等特性。
纯钼靶材溅射出的薄膜在耐腐蚀性(变) 和密着性(膜的剥离)等方面仍有待改善。 已有研究表明:在钼中加入适量合金元素(V、Nb、W、Ta)可使其比阻抗、应力、耐腐蚀性等各种性能达到均衡。 因此,目前钼合金靶材已经取代纯钼靶材成为研究的热点。 添加 W 可以有效提高钼的高温强度和再结晶温度,抑制钼靶材中的晶粒长大,但是钨的比重大且室温脆性大,钨添加量较大时会导致钼合金靶材较重,且塑性降低,容易萌生裂纹[4]。 Jorg 等[5]的研究表明,在钼中添加 20% (原子数分数)Al 和 10% (原子数分数)Ti 可以改善钼的抗氧化性能,并同时保持其低电阻率。 由于钼与铌均具有体心立方的晶体结构, 两 者 之 间 的 晶 格 错 配 度 低, 在 钼 中 添 加5% ~ 10% (质量分数) Nb 可以显著提高溅射薄膜的比电阻、耐腐蚀性能和黏结力[6 - 7]。 由于钽会优先被氧化形成钝化层,所以添加Ta元素可以降低薄膜的腐蚀率,但会造成钼合金薄膜电阻率升高[8]。
与钼铌合金薄膜相比,钼钽合金薄膜晶粒细化效果更加显著,薄膜沉积速率更大,薄膜表面粗糙度更小,但薄膜的电阻率更大[9]。Mo 靶材组织对溅射薄膜形貌与性能的影响研究结果表明:靶材组织、择优取向对薄膜形貌与取向影响不大,但靶材晶粒尺寸及均匀性会影响薄膜沉积速率、薄膜厚度及薄膜的方阻[10]。 马杰等[11] 研究了钼靶材变形量及热处理对薄膜组织与性能的影响,结果显示:相较于变形量小的钼靶材,80% 变形量的钼靶材溅射所得薄膜晶化程度更高;钼靶材经1 050 ℃退火后溅射制得薄膜粗糙度小。
磁控溅射是钼合金薄膜的主要制备技术。 靶材作为磁控溅射过程中的关键材料,不仅使用量大,而且靶材质量的好坏对钼合金薄膜的性能起着决定作用。 本文从粉体优化、混粉工艺、成型和烧结技术等方面对钼及钼合金溅射靶材相关专利进行了统计与分析,旨在为开发高品质钼合金多元靶材提供借鉴。
1 、专利统计与分析
1.1 粉体优化
专利(CN 103990802 B) [12] 通过优化 Mo 粉末的性状,开发出了一种高密度、高纯度 Mo 合金溅射靶材的制备方法,所制备 Mo 合金溅射靶材能够稳定、廉价地制造出低电阻、高耐湿/高耐热性、与基体密合性的高品质薄膜。
专利(CN 103173728 B) [13] 发明了一种廉价且可稳定制备 Mo 合金溅射靶材的方法,即将 Mo 粉与1 种或 2 种以上的 Ni 合金粉末混合(Ni6Nb7、Ni3Nb),在 800 ~ 1 500 ℃ 下加压烧结(10 ~ 200 MPa)。 Mo合金中 Ni 与 Nb 含量低于 50% (原子数分数),其中Nb 含量低于 20% (原子数分数)。 该专利避免了使用 Mo、Ni、Nb 粉末作为原料,解决了合金化不充分造成的 Ni 铁磁相的残留,稳定了溅射速度,提高了靶材寿命。
专利(CN 102127741 A) [14] 提出了一种薄膜太阳能电池用高纯钼靶的制备方法。 该方法首先采用钼酸铵为原料,经焙烧获得三氧化钼,随后在 450 ~600 ℃高纯氢气气氛下进行一次还原得到二氧化钼,再在 950 ~ 1050 ℃进行二次还原得到 Mo 粉,然后经过混料、筛分、等静压成型后,在中频感应炉中于 1 950 ~ 2 000 ℃烧结,通过大功率电子束熔炼提纯,经锻造、热轧、热处理退火、机械加工、超声波清洗、钎焊等工序制得高纯度、高密度和均匀性良好的钼靶。 该专利的之处在于:(1) 通过高纯氢气多次还原氧化钼提高钼粉纯度;(2) 采用大功率电子束熔炼提纯有利于碳氧充分反应,提高脱氧效果;(3)大变形量热轧可确保钼靶材晶粒平均尺寸小于 50 μm。
专利(CN 103160791 B) [15]采用三氧化钼、氢氧化钠和钼金属为原料,经过反应、球磨、过筛和热压工序制成钠掺杂钼平面溅射靶材,其中钠的原子数分数为 1% ~ 10% ,钠的掺杂能够大幅度提高铜铟镓硒薄膜电池的转换效率。
专利(CN 114411103 A) [16] 公开了一种大尺寸钼靶材的制备方法。 其方案具有以下优点:(1) 采用“氨溶 + 阳离子交换” 对原料粉末进行针对性提纯,可有效去除碱性金属(如 K、Na 等) 和过渡族金属杂质(如 Fe、Ni 等);(2)通过“预锻 + 交叉轧制 +高温退火” 的工艺设计,有利于获得微观组织均匀可控、晶粒细小、晶粒取向分布均匀的靶材;(3) 通
过表面化学腐蚀解决了传统轧制存在的变形不均匀问题。
专利(CN 114318256 A) [17] 公开了大尺寸钼溅射靶材及采用化学气相沉积法的制备工艺。 具体为:通过钼与三氟化氮反应制备出粗品六氟化钼,随后经真空蒸馏法和吸附法提纯得到高纯度六氟化钼,再在还原气氛下,经过化学气相沉积在基体材料上沉 积 金 属 钼。 该 方 法 所 制 备 靶 材 纯 度 高(99.999 9% 以上),致密度高(不低于 99.5% );此外,该方法在化学气相沉积设备中一步完成,产品一致性优于传统钼靶材,且可用于生产直径 500 mm以上的大尺寸钼靶材。
专利(CN 105648407 B) [18] 公开了一种高致密度钼铌合金靶材的制备工艺。 以钼粉为原料,添加5% ~ 15% (质量分数)铌粉、0.1% ~ 0.8% (质量分数)氢化锆进行混合,经过冷等静压成型,再进行真空烧结。 该发明的特点在于利用氢化锆的活化作用,通过粉末冶金直接制备高致密钼铌合金靶材。
专利(CN 10943990 A) [19] 利用氢化铌的活化作用,采用粉末冶金工艺制备高致密度、高含量钼铌合金溅射靶材。 专利(CN 110257784 A) [20] 同样采用粒度更小、表面积更大的氢化铌替代铌粉,提高扩散速率及烧结致密度,同时氢化铌分解释放的氢气具有还原作用,可降低钼铌合金中的氧含量,提高靶材纯度。
专利(CN 105568236 B) [21]发明了一种高纯、高致密、大尺寸 MoTi 合金溅射靶材的制备方法。 将钼和氢化钛原料在氩气气氛下进行混合并采用冷等静压压制成型,随后在真空烧结炉中进行两段烧结,轧制、退火、机械加工获得成分均匀、无偏析且晶粒尺寸小的靶材。
专利(CN 106513664 B) [22] 采用钼酸钾为原料制备钼钾合金靶材,避免了杂质的引入,所制备靶材密度高、成分均匀,镀膜效果好。高世代钼靶材对靶材纯度、晶粒尺寸、致密度提
出更高的要求,常规方法生产成本高、成品率低。 基于此,专利(CN 108642457 B) [23]公开了一种方法简单、生产成本低、成品率高、利于工业化生产的高世代钼靶材的制备方法。 具体为:将两种不同粒径的钼粉在真空下混合后过筛,进行等静压处理,再烧结、热轧、真空退火。 该方法制得靶材致密度超过99.5% ,靶材内部无气孔、裂纹、分层、夹杂等缺陷,靶材表面粗糙度小于 0.6 μm, 平均晶粒不 超 过80 μm。
相比平面靶材,管状钼合金溅射靶材利用率更高(理论上可达 70% ),得到国内外的广泛研究和应用。 专利(CN 110158042 B) [24] 先通过制备大颗粒钼铌粉体,提高粉体成型时的流动性,同时采用粗细粉体级配的方式提高松装密度,从而制得成分均匀、无偏析、晶粒细小( 小于 50 μm) 的钼铌合金旋转靶材。
专利(CN 114231940 A) [25] 将六羰基钼颗粒在高纯氢气和氩气气氛中加热到 40 ~ 60 ℃使其气化,再利用化学气相沉积法在预热基体材料上进行沉积,从而制得钼溅射靶材。 其优势在于成膜速度和成膜质量可以通过控制气体流速、流向进行调控,同时调整沉积时间、沉积基板材质、形状和尺寸,可以沉积不同厚度、不同尺寸、不同形状的钼靶材或钼靶材坯料,且由于沉积温度低,不会产生污染废气。
专利(CN 111254396 A) [26] 公开了一种钼钨合金靶材的制备方法。 其特点在于以钼粉、钨粉、三氧化钨粉体作为原料,利用三氧化钨与氢气反应得到烧结活性更高的新鲜钨粉,提高烧结致密化,减少缺陷,提升靶材品质。
钨钼因密度差异大易造成组织出现偏析,影响靶材组织均匀性,且热轧法制得靶材通常具有取向性,热等静压技术成本较高并增加了工艺复杂性。
专利(CN 111893442 B) [27]针对以上问题,提出了一种钨钼溅射靶材制备方法。 其特点在于:(1) 使用密度与 Mo 更接近的三氧化钨替代钨,在氢气气氛下两次高温处理原位还原得到均匀混合的钼钨混合粉体,提高靶材烧结均匀性;(2)通过高能球磨细化粉体,提高粉体烧结活性,获得高致密性的坯体;(3)采用冷等静压成型并进行预烧,促进易挥发非金属元素(如氧)的脱除。
专利(CN 111534800 B) [28] 将高纯的钼粉和铌粉进行压制,并在氢气下预烧,降低钼铌中的氧含量和杂质,基于所制备的高纯度、低含氧量、高振实密度钼铌合金粉末,提出了一种热等静压制备大尺寸钼铌平面靶材的方法。
专利(CN 106567047 A) [29] 采用氮化硼和石墨的组合模具热压制备钼铌合金,有效阻止了渗碳现象,获得了高致密度、高纯、微观组织可控的钼铌合金靶材。
1.2 混粉工艺优化
专利(CN 102337418 B) [30] 针对传统等静压结合烧结工艺制备钼铌合金烧结致密度不足、满足溅射靶材要求问题,提供了一种工艺简单、易实现工业化生产的钼铌合金板的制备方法,所制备靶材密度不低于 9.85 g / cm3。 该发明的特点在于采用振动压制方式对混合得到的钼铌合金粉体进行压坯,振动频率为 2 000 ~6 000 Hz,压制力为 10 ~30 MPa,
保压时间为 30 ~ 60 s;随后在 1 900 ~ 2 100 ℃ 真空烧结 6 ~ 10 h。
专利(CN 105887027 B) [31]在混合钼、铌粉体时加入过程控制剂(硬脂酸锌、棕榈酸、硬脂酸乙酯、聚乙烯醇和硬脂酸中的一种或几种),在球磨过程中过程控制剂能够包覆在金属粉末表面,形成一层润滑薄膜,降低粉末表面能,减少了粉末间的冷焊,从而解决了粉末粘球和粘罐问题,同时缩短了球磨时间。
溅射靶材的晶粒均匀性在很大程度上影响着薄膜质量和电子元器件性能。 因为靶材不同区域晶粒尺寸的差异会引起溅射速度的差异,进而造成薄膜厚度不均匀。 因此,如何提高溅射靶材晶粒均匀性是平 面 显 示 领 域 面 临 的 关 键 难 题。 专 利 ( CN109355632 B) [32]提出了一种提高溅射镀膜用钼及钼合金溅射靶材晶粒均匀性的方法。 其特点在于:
采用球磨—分级联合处理减少钼粉还原过程中的硬团聚,从而坯体烧结的微观晶粒均匀性以及溅射镀膜微观和整体均匀性。
专利(CN 103255379 A) [4] 基于 MoW 合金导电性好、抗氧化且膜应力低等优点,提出了一种 MoW合金平面溅射靶材的制备方法,克服了现有方法制得成分均匀、无偏析、晶粒细小靶材的难点。 该发明的特点之一在于采用机械合金化技术实现钼和钨原子级别的混合,在固态下实现了合金化,显著提高了 MoW 的活性,降低了 MoW 的烧结温度,从而提高了合金致密度、降低了晶粒尺寸。 类似地,专利(CN 105154740 A) [33] 公开了一种机械合金化制备铌钼靶材的方法。
专利(CN 108374152 B) [34] 通过机械混合使钼粉均匀渗入海绵钛孔隙中以确保钼粉不发生泄漏,同时在真空自耗电弧熔炼炉中进行熔炼,促使合金铸锭成分均匀化,从而制备出 100% 致密的、成分均匀的 钼 钛 合 金 溅 射 靶 材。 类 似 地, 专 利 ( CN109811318 A) [35]以溅射法生产的 99.9% 纯度的钼合金为原料,采用电子束冷床熔炼工艺制备纯度大
于 99.98% 的钼溅射靶材。
专利(CN 102321871 B) [36] 发明了一种热等静压生产平板显示器用钼合金溅射靶材的方法。 将低氧含量的钼粉与添加的金属粉末(铌粉或钽粉) 在惰性气氛保护下进行混合造粒、过筛,液压成型制成靶坯,随后经冷等静压提高均一性,再热等静压烧结(压力 200 ~ 300 MPa,温度 1 200 ℃)。 该发明生产周期短、工序少、能耗低,所制备钼合金靶材致密度高、均匀性好、性能。
专利(CN 107916405 A) [37] 通过改进混粉工艺严格控制杂质的引入,提出了一种高密度、晶粒细且均匀的钼钽合金溅射靶材的制备方法。 该发明能够靶材吸氢脆化,提高靶材加工性能。 其特点在于:对钼粉和钽粉进行真空预烧处理,去除了粉体中的氢、氧及低熔点物质;在粉体混合时采用氩气保护减少杂质的混入;选择钼球替代钢球进行球磨,减少铁杂质的掺入。
1.3 轧制工艺和烧结方法
大尺寸钼板由于坯料重量及尺寸规格较大,制备中存在两个问题:一是在常规尺寸氢气炉中加热,二是直接加热轧制时钼坯降温严重,容易出现轧制开裂的现象。 专利(CN 102534519 B) [38] 针对上述问题提出了一种 LCD 平板显示器溅射靶材用大尺寸钼板的制备方法。 采用涂刷抗氧化涂层(玻璃粉、水玻璃、水按质量比 8 ~ 10∶ 1∶ 8 ~ 10 混合)和钢包套包覆的方式缓解加热和轧制时的氧化问题及坯料降温严重导致的开裂问题,并在次轧制后通过冷却抑制组织不均匀长大和再结晶,制备出尺寸均匀的等轴晶组织。
专利(CN 114411103 A) [39] 公开了一种大尺寸钼靶材及其制备方法,所述制作方法包括如下步骤:行粉体装模,随后进行冷等静压,再经过烧结,并采用一火二道次轧制法进行热轧处理,进行校平、热处理、机械加工和清洗,制得大尺寸钼靶材。
该方法采用一火二道次轧制法,有效了钼靶因持续高温造成的晶粒异常长大,制得的大尺寸钼靶材可以用于高世代线平板显示器。
专利(CN 112609162 A) [40] 公开了一种 LCD 钼靶材及其轧制方法。 采用三个火次进行轧制,避免了钼靶坯在轧制过程中发生板面绕曲及开裂现象,降低了操作难度,提高了成材率。 所制备靶材纯度达到 99.95% 以 上, 平 面 度 ≤1.3 mm, 致 密 度 超过 97% 。
纯 Mo 中引入置换固溶元素 Ti 形成 MoTi 固溶体,可改善钼的低温塑性并提高钼的再结晶温度。但 MoTi 合金多采用热等静压或热压烧结制备,对设备要求严格,限制了产品规格尺寸。 基于此,专利(CN 104532201 A) [41]提出了一种 MoTi 合金溅射靶材的制备方法。 将钼粉和钛粉在氩气中进行混料,随后冷等静压成靶坯,在氦气气氛下烧结。
G6 世代线以上的 TFT - LCD 产线主要使用长条型的钼靶。 通过多次轧制获得长条形钼靶材的生产效率不高,而热挤压方法制备的钼靶晶粒较大,致密度 满 足 使 用 要 求。 专 利 ( CN 111647860B) [42]将钼粉装入胶套进行冷等静压成型获得坯体,并在氢气氛围下烧结,再进行热挤压,退火、校平、机加工得到长条型钼靶。
专利(CN 111850495 B) [43] 采用阶段升温的烧结方式,通过控制升温速率,促使钼靶材致密化、均匀化。 该发明制备钼靶材晶粒尺寸小、纯度高( ≥99.97% )、致密度高(≥99.9% )。
专利(CN 110777343 A) [44] 在真空下采用微波烧结将钼生坯烧结成钼板坯,并通过电子束熔炼进行提纯,解决了传统方法烧结时间长、烧结温度高、晶粒粗大、杂质含量高、能耗高的问题。 所制备靶材晶粒细小均匀,具有一定的结晶取向,性能优良。
专利(CN 111230096 A) [45]将混粉工艺、脱气工艺和热等静压烧结工艺相互配合,致力于改善合金靶材的致密度。 该发明制得的铬钼靶材晶粒尺寸细小,致密度在 99% 以上,同时此工艺可有效保障产品不受外界氧化,确保产品纯度。
热等静压烧结制造的 Mo - Ni - Ti 合金靶材存在部硬度不均匀的部位,其中部硬度低的部位在机械加工时易变形,产生裂纹、缺损、脱落等问题;部硬度高的部位将造成切削刀具磨损,引起靶材表面粗糙度变大,导致溅射时异常放电。 基于此,专利(CN 111719125 A) [46] 提出了一种 Mo 合金靶材的制备方法,通过对混合粉体(Mo、NiMo、Ti 粉末)常温加压成型再加压烧结,并调整 Mo 合金靶材中Ni 和 Ti 的添加量,实现对 Mo 合金靶材维氏硬度的调节(340 ~ 450 HV),抑制机加时的靶材变形以及溅射时的异常放电。
专利(CN 104073771 A) [47] 将冷等静压制得的靶坯密封在真空石英管中进行烧结,采用多段升温,使 PVA 粘结剂充分挥发,制得钠掺杂钼合金靶材。
专利(CN 105714253 B) [48] 将钢膜和橡胶板结合进行冷等静压成型,解决了密封问题,克服了传统冷等静压压坯尺寸精度差的问题,并据此提出了一种大尺寸、细晶钼钽合金溅射靶材的制备方法。 该方法用于生产致密度大于 97% 的大尺寸靶材(长度2 m 左右,宽度 1.3 m 左右)。
1.4 其 他
专利(CN 105525260 A) [49] 公开了一种 Mo 靶坯和 Mo 靶材的制作方法,即对预压 Mo 粉进行脱气处理得到 Mo 靶坯,再进行热等静压获得 Mo 靶材(温度 1 300 ~ 1 400 ℃,压力大于 150 ~ 200 MPa,保压时间 3 ~ 6 h),克服了热压烧结中 Mo 靶材尺寸对模具尺寸和强度的依赖及单轴加压造成的 Mo 靶材内部组织不均匀问题。
随着智能手机和平板终端向柔性化发展,具有轻量、耐冲击和不易破碎等性质的树脂膜已被用于制造柔性 FPD。 但相比玻璃基板,树脂基板具有透湿性(高温高湿环境会导致布线膜的电阻发生变化),且通常在基板上形成层叠布线膜后,层叠布线膜不可避免地接触大气,这就要求层叠布线膜具有更高的耐湿性和耐氧化性。
专利(CN 102956158 A) [50]提出一种电子部件用层叠布线膜以及覆盖层形成用溅射靶材。 即在 Mo 中添加一定量的 Ni 和 Ti,制得Mo100 - x - yNixTiy(10≤x≤30,3≤y≤20)覆盖层,用于覆盖以 Al 为主要成分的主导电层。 Ni 的添加可提高覆盖层的耐氧化性,改善纯 Mo 在大气中加热后的氧化变及电接触性恶化问题。 Ti 易与氧结合形成钝化膜,进一步提高其耐湿性,起到保护布线膜的作用。 同时该专利指出,通过控制 Ni 和 Ti 添加量,可确保加热工序中该覆盖层在与 Al 层叠时仍维持低电阻值。
专利(CN 114293160 A) [51] 以 Mo 为基体,提出了一种三元、四元钼合金靶材制备方法。 其中掺杂元素包含 0.5% ~ 40% (原子数分数) Ti 以及 0.5%~ 40% (原子数分数)的 Ga、Ni、Nd 中的至少一种元素。 所制得多元钼合金靶材相比二元合金 Mo 靶材,具有的耐氧化性、耐湿性、耐高温性能。 此外,低表面张力金属元素的掺杂改善了刻蚀性能。
专利( CN 109207941 A) [52] 提出了一种 MoNb合金靶材的制备方法(其中 Nb 的原子占比为 5% ~30% ),能够解决布线薄膜、电薄膜的基底膜与覆盖膜上出现的高电阻问题以及高成膜速度时靶材表面粗糙度变大问题,从而改善 TFT 性能稳定性。 其制备过程为:将 Mo 粉(平均粒径 4 μm)和 Nb 粉(平均粒径 35 ~ 115 μm)通过交叉旋转混合机进行混合
得到 10% Nb(原子数分数) 的混合粉体,随后填充至软钢制的加压容器中,并在 450 ℃下真空脱气、密封,然后在1250 ℃、145 MPa 热等静压处理 10 h 得到烧结体, 经机械加工和研磨后制作成直径180mm、厚度5mm的靶材。
钼镍铜多元合金薄膜不仅具有良好的热电和机械性能,而且气密性好、 不易潮解。 专利 ( CN110670032 B) [53]公开了一种钼镍铜多元合金靶材的制备方法。 该方法通过添加镍和铜降低钼合金熔点,借助烧结工艺参数调控解决了 3 种金属粉末熔点相差大导致的难烧结问题。 所制备钼镍铜合金靶材气密性好、耐湿耐潮、密度高、纯度高。
专利(CN 113319539 B) [54] 提供了一种大尺寸面板钼靶的制备方法。 具体步骤为:将靶材及背板进行粗铣和精铣,然后将靶材与背板进行钎焊,然后进行校正、烘干、抛光以及喷砂处理。 该方法提高了钼靶与背板的结合率,提高了产品的合格率,减少了资源浪费。
专利(CN 103154306 A) [55] 涉及一种含钼靶材制备方法,包含二元合金( MoTi)、三元合金( MoTi中加入 Ta 或 Cr 作为第三主金属元素)。 其具体步骤为:将钼粉、钛粉和钽粉(或铬粉) 按一定比例在V 型混料机中混合约 20 min,在 23 ℃ 条件下,通过单向压制法( 压力约 470 MPa) 压实得到直径约95 mm 的颗粒,将压制颗粒封装在低碳钢罐内进行热等静压处理(120 MPa,1 325 ℃,4 h),将热等静压后的材料加工成直径约 58.4 mm、厚度约 6.4 mm的靶材。 该发明制得的靶材在较低刻蚀速率下具有一定的优势,且溅射得到的薄膜对基材有较强的粘附性及低的电阻率。
2、 结 论
基于对上述专利的分析可以看出,钼及钼合金溅射靶材的制备主要采用粉末冶金技术,需要经过粉末混合、压制成型、烧结、压力加工和机加工等多道工序。 制备高质量的钼合金溅射靶材往往需要进行压制和烧结、多道次的轧制与反复的热处理。 由于热等静压或热压烧结设备规格有限,限制了产品的尺寸规格。 因此,开发一种方法简单、成本低、成品率高且利于工业化生产的高品质大尺寸钼合金溅射靶材制备方法具有重要的意义。 此外,目前 Mo 合金靶材中主要添加元素有 Nb、Ti、Ta、W 等,鉴于每种掺杂元素的作用和性能各不相同,而三元及多元钼合金靶材的研究和应用还不够全面,因此针对不同应用领域对钼合金薄膜性能的不同需求,通过成分设计与微观组织调控开发出新型组分钼合金靶材将是一个重要的发展方向。
钼
钼是一种过渡金属元素,为人体及动植物的微量元素。元素符号Mo,钼单质为银灰难熔金属,硬而坚韧。在元素周期表中属ⅥB族,原子序数42,原子量95.94,面心立方晶体,常见化合价为+6、+5、+4。
在中世纪就使用辉钼矿(MoS2),因其外观很像石墨,被误认为是变态的石墨而用来制作铅笔芯。1778年瑞典化学家舍勒(C.W.Scheele)用硝酸分解辉钼矿,从中发现了一种新元素,以希腊文molybdos(似铅)命名。1782年瑞典化学家耶尔姆(P.J.Hjelm)首次制得金属钼。
资源
钼矿分布虽广,但只有少数矿床有开采价值。美国是钼矿的国家,产量占世界总产量的60%以上,其次是智利和加拿大。中国的钼矿产于东北、西北和中南等地区。具有工业价值的钼矿物为辉钼矿,其开采量占钼矿总开采量的90%。辉钼矿容易浮选,可由含钼0.06~0.3%的原矿选得含钼47~50%的精矿。钼的次生矿钼钨钙矿[Ca(Mo,W)O4]、铁钼华(Fe2O3·MoO3·H2O)、钼铅矿 (PbMoO4)和钼铜矿[2CuMoO4·Cu(OH)2]等也有一定开采价值。主要钼矿生产国(中国除外)的钼矿储量和产量(1979年,以钼计)如下:
性质和用途
常温下钼在空气中很稳定,高于600℃时很快地氧化生成三氧化钼(MoO3)。钼与氢不发生化学反应,但钼粉能吸收氢。在温度高于700℃时,水蒸气能将钼氧化成二氧化钼(MoO2)。钼与碳、碳氢化合物或一氧化碳在高于800℃下反应生成碳化钼(Mo2C)。钼能耐稀硫酸、氢氟酸、磷酸等酸腐蚀,但不耐硝酸、王水和氧化性熔盐的腐蚀。钼在常温下能耐碱,但在加热时则被碱腐蚀。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
冶炼
钼生产的主要原料为辉钼精矿。提取过程包括氧化焙烧,三氧化钼、钼粉和致密钼的制取等主要步骤,工艺流程见图。
青岛长期回收废钼收购厂家
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁 钼箔片后再用于炼钢.低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右.不锈钢中加入钼,能改善钢的耐腐蚀性.在铸铁中加入钼,能提高铁的强度和耐磨性能.含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件.金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用.氧化钼和钼酸盐是化学和石油工业中的优良催化剂.二硫化钼是一种重要的润滑剂,用于航天和机械工业部门.钼是植物所的微量元素之一,在农业上用作微量元素化肥. 纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温 钼坩埚烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造.合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存.动物和鱼类与植物一样,同样需要钼. 钼在其它合金领域及化工领域的应用也不断扩大.例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域.由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件.
钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数是42,是一种灰的过渡金属。因为一开始钼矿石与铅矿石被混淆了,因此Molybdenum之名来自新拉丁语 molybdaenum,后者来自古希腊语 Μόλυβδος molybdos,意思是铅。钼矿石在历史上被人们所熟知,但该元素的发现(即从其它金属中区分出来)是在1778年,由卡尔·威廉·舍勒识别出来。该金属在1781年次被彼得·雅各·耶尔姆分离得出。
钼在地球上没有自然金属的形态,但是在矿物中以各种氧化物的形式出现。在单体元素形式中,钼是一种灰金属,呈灰口铸铁颜,是元素中熔点排名第六高。它很容易在合金中形成坚硬、稳定的碳化物,因此,世界上大多数钼产品(约80%)都被用作某种铁合金,包括高强度合金和高温合金。
大多数钼化合物在水中微溶,但是当含钼的矿物与氧气和水接触时可以形成钼离子MoO2−4。在工业上,钼化合物(世界上约有14%的产品)被用于高压和高温应用品,如素或催化剂等。
目前,一些细菌在大气氮分子的化学键上常用的催化剂是含钼酶,能起到生物固氮作用。在细菌和动物中,虽然只有细菌和蓝藻酶会参与到固氮活动中,但已知的含钼酶至少有50种。这些固氮酶含钼的形式与其它含钼酶不同,但都有氧化形式的钼,用以搭配钼辅因子。由于钼的各种辅因子酶的多样功能,钼成为高于真核生物组织的膳食矿物质,虽然并非细菌到钼。
在18世纪,辉钼矿往往被认为是铅矿。1778年瑞典的卡尔·威廉·舍勒从辉钼矿中提取出了氧化钼,根据舍勒的启发,1781年他的朋友,同是瑞典人的彼得·雅各布·海基尔姆把钼土用“碳还原法”分离出新的金属钼。
钼主要用于钢铁工业。 0.3%的钼添加剂可提高几种钢种的铸铁强度和耐腐蚀性。耐锈和耐酸的钼钢合金含有0.4至3.5%的钼。表面处理可以提高含钼钢的机械强度。一些钢的钼含量也可达到14.5%。钼替代某些钢种的镍。在这种情况下,获得Cr-Mo钢代替Cr-Ni钢。目前,钼还用于生产耐热合金。
化合物应用
MoO3催化剂用于许多有机化学过程,例如重整过程,石油馏分的脱硫,邻苯二甲酸酐,马来酸酐和蒽醌等。产生其混合氧化物用作丙烯醛和丙烯酸生产中的催化剂。钼化合物用于颜料,染料,试剂,润滑剂,催化剂,缓蚀剂,陶瓷助剂,微量元素等。产生。硼化钼,碳化物,硅化物具有半导体特性。
钼作为辅酶
钼是大多数生物中的元素。事实上,早期的地球海洋缺乏钼可能会对真核生物(包括植物和动物)的演化产生强烈影响。
目前已经鉴定出至少50种酶含有钼,主要存在于细菌中。这些酶包括醛氧化酶,亚硫酸氧化酶和黄嘌呤氧化酶。 就功能而言,钼酶催化氧化反应,有时会在调节氮,硫和碳的过程中还原某些小分子。在一些动物和人类中,黄嘌呤氧化酶催化黄嘌呤氧化成尿酸,这是一种嘌呤分解代谢过程。黄嘌呤氧化酶的活性与体内钼的量含成正比。然而,高浓度的钼反而会抑制嘌呤分解代谢和其他过程。钼的浓度也会影响蛋白质的合成,代谢和生长。
Mo是大多数固氮酶中的组成成分。固氮酶催化大气氮气生产氨:
N2+8H++8e-+16ATP+16H2O→2NH3+H2+16ADP+16Pi
铁钼辅因子的生物合成是一个复杂的过程。
钼酸盐在体内以MoO42−形式运输。
目前尚未发现钼对人类的急毒性,毒性取决于其化学状态。研究显示,某些钼化合物,对老鼠的半数致死剂量(LD50)低至180 mg / kg,虽然没有人类毒性数据,但动物研究表明,长期摄入超过10毫克/天的钼可引起腹泻,生长迟缓,不孕,出生体重低和痛风;还会影响肺部,肾脏和肝脏。钨酸钠是一种竞争性的钼抑制剂,饮食钨会降低组织中钼的浓度
钼(Molybdenum),是一种具有性能的金属元素,原子序数为42,原子量约为95.95。纯钼为具有金属光泽的银白金属,质地坚硬且坚韧,主要以氧化物或硫化物形式存在于自然界中,如辉钼矿等。
图1 辉钼矿在钢铁生产中,钼常被用作合金元素,显著提高钢材的强度、韧性和耐热性,适用于制造汽车零部件、机械结构件等高强度、高耐腐蚀性的产品。钼还广泛应用于电子工业,用于制造电子管、晶体管的电和灯丝等部件,因其高熔点和稳定性而成为电子管、半导体器件和集成电路中的关键材料。在化工领域,钼可用作催化剂,促进一些化学反应的进行,同时由于其耐腐蚀性,也用于制造化工设备的零部件。由于钼及其合金具有的耐高温、高强度等特性,因此被广泛应用于制造军事装备中的关键零部件,如坦克装甲、导弹外壳等。钼作为一种重要的战略性矿产资源,在推动国家工业发展、科技进步和国防建设等方面发挥着不可替代的作用。随着科技的不断进步和工业的持续发展,钼的应用前景将更加广阔。一、钼的基本属性钼是一种位于元素周期表第五周期第6族的过渡金属元素,在自然界中,钼的丰度较高,且存在多种同位素,如Mo-92、Mo-94、Mo-95、Mo-96、Mo-97、Mo-98、Mo-100等。其中,Mo-98是常见的同位素,占钼元素总量的约25%。这些同位素在地壳中的分布受到地球演化和岩浆活动的影响,主要富集在岩石圈和生物圈中。
图2 钼矿在室温下,钼为银白的坚硬金属,具有良好的延展性和可塑性。熔点2610℃-2622℃,沸点4612℃-5560℃;密度10.2g/cm3-10.28g/cm3;随着温度的升高,钼的强度和硬度会有所下降,但即使在高温下,钼仍能保持较高的强度和硬度。此外,钼还具有良好的热传导性和电导性。钼的化学性质相对稳定,但在特定条件下仍能与其他元素发生反应。在常温下,钼表面会形成一层致密的氧化膜,从而阻止进一步的氧化。但在高温下,钼可以与氧发生反应生成氧化钼。钼可以与硫反应生成硫化钼,这是钼在自然界中的主要存在形式之一。在高温下,钼可以与氮反应生成氮化钼。此外,钼与酸、碱的反应性相对较弱。它通常不溶于稀酸(如盐酸、氢氟酸)和碱溶液,但可溶于热浓硫酸、硝酸和熔融中。在熔融状态下,钼还可以与一些金属(如铜、镍等)形成合金。二、资源分布与勘查(一)资源分布钼资源的分布情况相对集中,主要分布在中国、美国、秘鲁、智利等国家。这些国家不仅是钼矿的主要生产国,也是钼储量为的国家。特大型钼矿床包括中国栾川钼矿和安徽金寨沙坪沟钼矿、美国Climax和Henderson钼矿、智利Chuquicamata和Pelambre钼矿等。
图3 世界钼矿资源分布图从储量来看,中国是钼资源为的国家,据不同年份数据显示,中国钼储量占比在38.7%-51.9%之间波动,这主要是由于资源储量的评估和更新是一个动态过程,会受到勘探进展、技术更新和市场需求等多种因素的影响。除中国外,美国、秘鲁和智利也是重要的钼矿储量国,它们的储量占比合计也相对较高。
图4 2013—2022年中国钼金属产量和消费量在中的占比变化主要钼矿的类型和特点包括火山岩浸染型和花岗岩型两种。火山岩浸染型钼矿通常与火山活动有关,矿石中钼的含量较低,但分布广泛;而花岗岩型钼矿则通常与花岗岩侵入体有关,矿石中钼的含量较高,是主要的工业钼矿类型。世界主要钼矿生产国包括中国、智利和美国等。其中,中国是大的钼矿生产国,其钼矿产量占产量的比例一直保持在较高水平。智利和美国也是重要的钼矿生产国,它们的产量在市场中占有重要。(二)中国资源分布中国钼资源的分布情况相对广泛,但主要集中在某些特定区域。中国的钼矿床主要分布在东秦岭-大别钼成矿带、兴-蒙钼成矿带、长江中下游钼成矿带、华南钼成矿带、青藏钼成矿带和天山北山钼成矿带。这些成矿带中的钼矿资源储量,品位较高,是中国钼矿资源的主要来源。具体来说,河南、内蒙古、西藏、黑龙江、吉林等地是中国主要的钼矿产区。其中,河南栾川钼矿是中国大的钼矿之一,也是大的钼矿之一,其储量,品位高,开采条件。内蒙古赤峰市翁牛特旗也发现了一处大型钼矿床,初步探明钼资源矿石量约1亿吨,金属量13万吨,这一发现进一步了中国钼矿资源。
图5 中国矿产资源分布示意图(钼)除了上述主要产区外,中国其他地区如大兴安岭、南岭等地也分布着一定数量的钼矿资源。这些地区的钼矿资源虽然规模较小,但也在一定程度上满足了当地和周边地区的钼矿需求。(三)勘查进展1.勘查历史与现状中国钼矿勘查的历史可以追溯到上世纪初,但真正的勘查工作大规模开展是在新中国成立以后。随着国家经济建设的需要,中国对钼矿资源的勘查工作逐渐加强,取得了一系列重要成果。近年来,随着勘查技术的不断进步和勘查工作的深入,中国钼矿资源的勘查成果更加,对钼矿资源的了解也更加深入。2.勘查技术传统的地质勘查方法在钼矿勘查中仍然发挥着重要作用。这些方法包括地质填图、地质剖面测量、地质勘探等,它们通过对地质构造、岩石类型、矿物组合等进行分析和研究,为钼矿的勘查提供了重要的基础资料。
图6 钼矿勘探现代勘查技术在钼矿勘查中的应用也越来越广泛。遥感技术、地球物理勘探技术、地球化学勘探技术等现代勘查技术的应用,大大提高了钼矿勘查的效率和准确性。遥感技术可以通过对地表和地下的信息进行远距离探测和识别,为钼矿的勘查提供重要的线索和依据;地球物理勘探技术可以通过对地下岩石和矿物的物理性质进行探测和分析,为钼矿的勘查提供重要的地球物理信息;地球化学勘探技术则可以通过对地表和地下的元素和化合物进行探测和分析,为钼矿的勘查提供重要的地球化学信息。
图7 钼矿岩心库三、开发与利用(一)开采技术钼矿的开采技术主要包括露天开采和地下开采两种。露天开采:适用于埋藏较浅、规模较大的矿床。露天开采具有成本低、效率高的优点,能够地获取大量的钼矿石。然而,这种方法可能会对环境造成较大的破坏,如土地破坏、植被损失等。
图8 钼矿区地下开采:适用于埋藏较深、矿体复杂的矿床。地下开采需要更高的技术和设备投入,以确保、地开采钼矿石。虽然成本相对较高,但这种方法能够减少对地表的破坏,并适用于复杂地质条件下的开采。(二)选冶工艺钼矿的选冶工艺流程包括破碎、磨矿、选矿、冶炼等环节。破碎:开采出来的钼矿石通常是大块的岩石,需要使用颚式破碎机、圆锥破碎机等设备将其破碎成不同粒度的颗粒,以便于后续的磨矿和选别。磨矿:经过破碎的钼矿石进入球磨机进行研磨,使其达到适合浮选的粒度。研磨后的矿石细料会进入螺旋分级机进行洗净和分级。选矿:浮选法是钼矿石选矿的主要方法之一。在浮选过程中,将破碎后的钼矿石与水和浮选剂混合形成矿浆,通过搅拌和充气使钼矿石颗粒与浮选剂结合形成泡沫层,然后将泡沫层刮出得到富含钼的精矿。此外,重选法也是钼矿石选别的一种方法,它利用钼矿石与其他杂质的密度差异进行分选。但重选法的分选效率相对较低,适用于处理粗粒级的钼矿石。冶炼:将钼精矿进行氧化焙烧,使其转化为三氧化钼。在焙烧过程中,钼精矿中的硫化钼与空气中的氧气反应,生成三氧化钼和二氧化硫。这一过程需要在高温下进行,通常采用回转窑、多膛炉等设备。之后进行氨浸处理,使三氧化钼溶解在氨水中形成钼酸铵溶液。在氨浸过程中需要控制好温度、压力、氨水浓度等参数以提高钼的浸出率。接着进行沉淀和结晶处理得到钼酸铵晶体。将钼酸铵进行还原熔炼得到金属钼。钼矿选冶工艺所需的设备主要包括给料机、颚式破碎机、球磨机、螺旋分级机、矿用搅拌桶、浮选机、浓缩机、烘干机等。(三)应用领域钼及其合金在多个领域有着广泛的应用和良好的前景。钢铁行业:钼可以提高钢的强度、硬度、耐磨性和耐腐蚀性,是制造高强度、高韧性钢材的重要合金元素。有冶金:钼可用于制造钼铜、钼镍等合金,这些合金具有优良的导电性、导热性和耐腐蚀性。化工行业:钼可作为催化剂、润滑剂等,在石油、化工等行业中发挥重要作用。电子行业:钼可以作为电材料、电子元件等,用于制造半导体器件、集成电路等。航空航天:钼及其合金具有高温强度、良好的抗热冲击性能和的抗氧化性能,可用于制造火箭发动机、飞机发动机等高温部件。
图9 飞机发动机
图10 钼矿应用四、市场与贸易(一)市场供需1.钼市场供需状况钼市场近年来呈现出供需相对平衡但略有偏紧的趋势。产量方面,钼产量主要集中在中国、美国、智利和加拿大等国家。消费量方面,随着经济的复苏和制造业的升级,是航空航天、军工、新能源等领域的发展,对钼的需求持续增长。进出口量方面,由于各国资源禀赋和产业发展水平的差异,钼的贸易量较大,主要贸易流向是从资源国家向制造业发达国家转移。价格走势方面,受供需关系、货币、地缘政治等多种因素影响,钼价呈现波动上涨的趋势。
图11 钼行业供需现状2.中国钼市场供需状况中国是大的钼生产国和消费国。产量方面,中国钼矿资源,近年来随着开采技术的进步和矿山扩产,钼产量保持稳定增长。消费量方面,中国制造业的发展和产业升级,是中高端制造业对特钢、不锈钢等含钼材料的需求增加,推动了中国钼消费量的持续增长。进出口方面,中国钼产品进出口量较大,但近年来随着国内产能的提升和消费结构的优化,量逐渐减少,出口量有所增加。价格走势方面,中国钼价受国内外多种因素影响,但总体呈现稳中有升的态势。
图12 2013—2022年中国钼金属产量和消费量变化(二)贸易格1.主要贸易伙伴中国钼产品的主要贸易伙伴包括美国、欧洲、日本、韩国等国家和地区。这些国家和地区对中国钼产品的需求量较大,主要用于高端制造业、航空航天、军工等领域。同时,中国也从这些国家和地区部分高品质的钼原料和深加工产品。2.贸易方式中国钼产品的贸易方式主要包括一般贸易、加工贸易和边境贸易等。一般贸易是中国钼产品进出口的主要方式,涉及的产品种类和数量较多。加工贸易则主要集中在沿海地区,利用当地的加工优势和便利的贸易条件,进行钼产品的深加工和出口。边境贸易则主要发生在与中国接壤的国家和地区,通过边境口岸进行钼产品的贸易往来。3.贸易壁垒在钼产品的贸易中,存在一些贸易壁垒,如关税壁垒、技术壁垒和绿壁垒等。关税壁垒主要体现在各国对钼产品征收的关税和出口关税上,影响了钼产品的贸易成本和市场竞争力。技术壁垒则主要体现在各国对钼产品的技术标准和质量要求上,需要中国钼产品企业不断提升产品质量和技术水平,以满足市场的需求。绿壁垒则主要体现在各国对和可持续发展的要求上,需要中国钼产品企业加强意识和技术的应用,以减少对环境的污染和破坏。(三)影响1.关税关税是影响钼产品贸易的重要因素之一。近年来,中国对钼产品的关税进行了多次调整,旨在优化产业结构、促进贸易平衡和保护环境。同时,其他国家也对钼产品的进出口关税进行了调整,影响了钼市场的供需关系和价格走势。2.产业产业是影响钼市场发展的重要因素之一。中国政府了一系列产业,旨在推动钼产业的转型升级和可持续发展。这些包括加强钼矿资源的保护和合理利用、推动钼产品深加工和高端化发展、加强和生产等方面的监管等。这些的实施有助于提升中国钼产业的竞争力和可持续发展能力。3.是影响钼产业发展的重要因素之一。随着意识的提高和法规的日益严格,中国政府对钼产业的要求也越来越高。这要求钼产品企业在生产过程中加强技术的应用和管理,减少污染物的排放和资源的浪费。同时,政府也加大了对违法行为的处罚力度,推动了钼产业的绿发展。五、环境保护与可持续发展(一)环境影响钼矿开采和冶炼对环境的影响是多方面的,主要包括土地破坏、水污染和大气污染等。土地破坏:钼矿开采过程中,需要进行大规模的剥离和挖掘,这会破坏原有的地表植被和土壤结构,导致土地退化、水土流失和生态失衡。此外,开采过程中产生的废石和尾矿堆积也会占用大量土地,对周边生态环境造成长期影响。水污染:钼矿开采和冶炼过程中会产生大量的废水,这些废水中含有重金属、酸碱物质和其他有毒有害物质。如果未经处理直接排放,会对周边水体造成污染,影响水质。废水的污染不仅会导致水生生物死亡,还可能通过食物链对人类健康造成威胁。大气污染:钼矿开采和冶炼过程中会释放大量的粉尘和有害气体,如二氧化硫、氮氧化物等。这些污染物会对大气环境造成污染,降低空气质量,影响人类健康。同时,粉尘和有害气体的排放还会加速温室效应和酸雨的形成,对气候和生态环境造成深远影响。(二)措施为了减轻钼矿开采和冶炼对环境的影响,当前采取了多项措施和技术手段。绿勘查:在钼矿勘查阶段,采用的勘查技术和方法,减少对环境的影响。例如,利用遥感技术、地球物理勘探和地球化学勘探等手段进行非破坏性勘查,降低对地表植被和土壤的破坏。绿矿山建设:在钼矿开采过程中,推行绿矿山建设,实现资源的利用和环境的影响。这包括采用的开采技术和设备,减少废石和尾矿的产生;加强废水处理,实现达标排放;实施土地复垦和生态恢复,恢复被破坏的土地和生态环境。技术应用:在钼矿冶炼过程中,采用的技术和设备,降低能耗和污染物排放。例如,采用的冶炼工艺和设备,提高能源利用效率;加强废气治理,减少二氧化硫、氮氧化物等有害气体的排放;推广使用清洁能源和可再生能源,降低化石能源消耗。这些措施和技术手段的实施取得了显著成效。通过绿勘查和绿矿山建设,降低了钼矿开采对环境的破坏程度;通过技术的应用和推广,提高了钼矿冶炼的水平和资源利用效率。然而,仍需要进一步加强监管和科技,以地保护环境和实现可持续发展。(三)可持续发展钼产业的可持续发展需要综合考虑资源、环境、经济和社会等多个方面。提高资源利用效率:通过技术和产业升级,提高钼矿资源的开采和冶炼效率,降低资源消耗和浪费。同时,加强低品位伴生矿的回收和尾矿的综合利用,提高资源利用率和附加值。降低环境污染:继续加强技术的应用和推广,降低钼矿开采和冶炼过程中的污染物排放。建立完善的废水、废气和固体废弃物处理系统,实现达标排放和资源的循环利用。同时,加强环境监管和执法力度,确保的落实和执行。加强科技:鼓励和支持科技和技术研发,推动钼产业向高端化、智能化和绿化方向发展。通过引进和消化吸收技术,提高钼产品的质量和性能;通过自主研发和,开发具有自主知识产权的新技术和新产品;通过智能化和自动化技术的应用,提高生产效率和性。推动产业升级和转型:优化产业结构,淘汰落后产能和工艺,推动钼产业向高端化发展。加强上下游企业之间的合作与整合,形成完整的产业链和供应链体系;拓展应用领域和市场空间,推动钼产业向多元化方向发展;加强合作与交流,积参与钼市场的竞争与合作。六、未来展望(一)技术趋势深部勘查技术:随着地表和浅部钼矿资源的逐渐枯竭,深部钼矿勘查将成为未来的重要方向。深部勘查技术将更加注重地球物理、地球化学和遥感技术的综合应用,以提高勘查精度和效率。同时,随着钻探技术的不断进步,深部钻探能力和性将得到进一步提升。智能化开采技术:智能化开采技术将成为未来钼矿开采的主流趋势。通过应用物联网、大数据、人工智能等技术,实现钼矿开采过程的智能化、自动化和远程化控制。这将有助于提高开采效率、降低生产成本、减少事故,并实现对环境的保护。绿开采和冶炼技术:随着意识的不断提高,绿开采和冶炼技术将成为未来钼产业发展的关键。这包括采用更加的开采方法、减少废水、废气和固废的产生和排放,以及提高资源利用率和能源效率等。(二)市场需求新兴应用领域的发展:随着科技的进步和新兴产业的发展,钼将应用于更多新的领域。例如,在新能源、新材料、航空航天等领域,钼及其合金因其的性能而具有广阔的应用前景。这将为钼产业带来新的增长点。替代品的出现:虽然目前尚未出现能够替代钼的材料,但随着科技的进步和材料的不断,未来可能会出现一些具有部分替代钼功能的材料。这将对钼市场产生一定的影响,但考虑到钼在多个领域的不可替代性,其市场需求仍将保持稳定增长。(三)战略建议资源储备:中国应继续加强钼矿资源的勘探和开发,提高资源储量和品位。同时,应加强对已开发钼矿的保护和管理,确保资源的可持续利用。此外,还可以通过海外投资、合作等方式,获取更多的钼矿资源储备。产业竞争力:中国钼产业应加强技术和产业升级,提高产品质量和附加值。同时,应优化产业结构,淘汰落后产能和工艺,提高产业整体竞争力。此外,还应加强品牌建设和市场营销,提高中国钼产品在市场上的度和影响力。合作:中国钼产业应加强与同行的合作与交流,共同推动钼产业的发展。这包括参与钼市场的竞争与合作、加强技术交流和人才培养、共同开发新的应用领域等。通过合作,可以实现资源共享、优势互补和互利共赢。综上所述,未来钼产业将面临更多的机遇和挑战。通过加强技术、优化产业结构、加强资源储备和合作等措施,中国钼产业将有望实现更加稳健和可持续的发展。