绍兴本地废钼回收电话地址
废钼回收的行业价值与市场前景
废钼回收是资源循环利用的重要环节,钼作为一种稀有高熔点金属,广泛应用于合金制造、电子工业和化工催化剂等领域。随着全球对稀缺资源需求的增长,废钼回收的经济价值日益凸显。据统计,回收1吨废钼可减少约80%的能源消耗,比原矿开采更具环保效益。目前,中国、美国和欧洲是废钼回收的主要市场,其中硬质合金废料、钼丝和废催化剂是主要来源。未来,随着新能源和高端装备制造业的发展,高品质钼的需求将持续上升,推动废钼回收行业向规模化、精细化方向发展。
钼的性质
密度10.2克/立方厘米。熔点2610℃.沸点5560℃。化合价+2、+4和+6,稳定价为+6。钼是一种过渡元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。在氧化的形式下,钼很可能是处于+6价状态。虽然在电子转移期间它也很可能首先还原为+5价状态,但是在还原后的酶中也曾发现过钼的其他氧化状态。
钼与钨的性质相近,其沸点和导电性能突出,线热膨胀系数小,所不同的是钼比较易于加工。
金属钼的热导率[135瓦/(米·开)]与比热[0.276千焦/(千克·开)]呈******搭配,使它成为抗热震和热疲劳的天然选择。它的熔点为2620℃,次于钨、钽,但密度却较之低得多,因此其比强度(强度/密度)大于钨、钽等金属,在对重量要求关键的应用中,更为有效。钼在1200℃仍有高的强度。
钼的主要缺点是抗高温氧化性能差(高于600℃迅速氧化)和室温延性不佳。为扬长避短,对高温氧化问题多采用涂层(如涂MoSi2、镀镍、镀铬等)办法控制;对塑性过差即通常说的低温脆化的欠缺,则通过合金强化和加人碳化物实现强化等措施解决。
钨(W)、铼(Re)、钽(Ta)、钛(Ti)和锆(Zr)等是常见的固溶强化元素。钨是钼的主要固溶强化元素,铼可把延脆转变温度降到—200℃。由它们形成的工业钼合金参见表。其中由镧构成的钼镧合金显示出为突出的抗蠕变及高温变形能力,其在高温下的这一特性表现得尤为明显。
(一)
有毒物质
1
一氧化碳
30
2
一甲胺
5
3
乙醚
500
4
乙腈
3
5
二甲胺
40
6
二甲苯
100
7
二甲基甲酰胺
10
8
二甲基二氯硅烷
2
9
二氧化硫
15
10
二氧化(石西)
0.1
11
二氯丙醇(皮)
5
12
二硫化碳(皮)
10
13
二异氰酸甲苯酯
0.2
14
丁烯
100
15
丁二烯
100
16
丁醛
10
17
三乙基氯化锡(皮)
0.01
18
三氧化二砷及五氧化砷
0.3
19
三氧化铬、镉酸盐、重铬酸盐(换算成CrO3)
0.05
20
三氯氢硅
3
21
己内酰胺
10
22
五氧化二磷
1
23
五氯酚及其钠盐
0.3
24
六六六
0.1
25
丙体六六六
0.05
26
丙酮
400
27
丙烯腈(皮)
2
28
丙烯醛
0.3
29
丙烯醇(皮)
2
30
甲苯
100
31
甲醛
3
32
光气
0.5
有机磷化合物
33
内吸磷(皮)
0.02
34
对硫磷(皮)
0.05
35
甲拌磷(皮)
0.01
36
马拉硫磷(皮)
2
37
甲基内吸磷(皮)
0.2
38
甲基对硫磷(皮)
0.1
39
乐戈(乐果)(皮)
1
40
敌百虫(皮)
1
41
敌敌畏(皮)
0.3
42
吡啶
4
43
金属汞
0.01
44
升汞
0.1
45
有机汞化合物(皮)
0.005
46
松节油
300
47
环氧氯丙烷(皮)
1
48
环氧乙烷
5
49
环己酮
50
50
环己醇
50
51
环己烷
100
52
苯(皮)
40
53
苯及其同系物的一硝基化合物(硝基苯及硝基甲苯等)(皮)
5
54
本及其同系物的二及三硝基化合物(二硝基苯、三硝基苯等)(皮)
1
55
苯的硝基及二硝基氯化物(一硝基氯苯、二硝基氯苯等)(皮)
1
56
苯胺、甲苯胺、二甲胺(皮)
5
57
苯乙烯
40
58
五氧化二钒烟
0.1
59
五氧化二钒粉尘
0.5
60
钒铁合金
1
61
苛性碱(换算成NaOH)
0.5
62
氟化氢及氟化物(换算成F)
1
63
氨
30
64
臭氧
0.3
65
氧化氮(换算成NO2)
5
66
氧化锌
5
67
氧化镉
0.1
68
砷化氢
0.3
69
铅烟
0.03
70
铅尘
0.05
71
四乙基铅(皮)
0.005
72
硫化铅
0.5
73
铍及其化合物
0.001
74
钼(可溶性化合物)
4
75
钼(不容性化合物)
6
76
黄磷
0.03
77
酚(皮)
5
78
萘烷、四氢化萘
100
79
氰化氢及氢氰酸盐(换算成HCN)(皮)
0.3
80
联苯-联苯醚
7
81
硫化氢
10
82
硫酸及三氧化硫
2
83
锆及其化合物
5
84
锰及其化合物(换算成MnO2)
0.2
85
氯
1
86
氯化氢及盐酸
15
87
氯苯
50
88
氯萘及氯联苯(皮)
1
89
氯化苦
1
90
二氯乙烷
15
91
三氯乙烯
30
92
四氯化碳(皮)
25
93
氯乙烯
30
94
氯丁二烯(皮)
2
95
溴甲烷(皮)
1
96
碘甲烷(皮)
1
97
溶剂汽油
350
98
滴滴涕
0.3
99
羧基镍
0.001
100
钨及碳化钨
6
101
醋酸甲酯
100
102
醋酸乙酯
300
103
醋酸丙酯
300
104
醋酸丁酯
300
105
醋酸戊酯
100
106
甲醇
50
107
丙醇
200
108
丁醇
200
109
戊醇
100
110
糠醛
10
111
磷化氢
0.3
(二)
生产性粉尘
1
含有10%以上游离二氧化硅的粉尘(石英、石英岩等)
2
2
石棉粉尘及含有10%以上石棉的粉尘
2
3
含有10%以下游离二氧化硅的滑石粉尘
4
4
含有10%以下游离二氧化硅的水泥粉尘
6
5
含有10%以下游离二氧化硅的煤尘
10
钨钼材料的化学性质与氧化反应
各种含碳气体和固体碳(碳黑、煤、石墨)在1000~1200℃范围与钨和钼开始反应,生成碳化物(W3C、WC和Mo2C、MoC)1400~1600℃下,反应加剧。金属钨和钼中即使含有少量的碳化物杂质,也会使钨和钼脆化。钨和钼与氮气反应:钨在低于2000℃时,不与氮气反应,高于2000℃与氮气作用生成氮化物WN2。氮气在600℃以上缓慢地溶解于钼中,1200℃以上使钼发脆,高于1500℃钼与氮气反应生成氮化物。
钨和钼与氧和空气的反应:金属钨和钼常温下在空气中是稳定的,在约400℃开始氧化,在更高的温度下迅速氧化,生成三氧化钨和三氧化钼。钨和钼与氢气的反应: 直到熔点温度,氢气都不与钨和钼发生作用,使氢气成为钨和钼热处理过程中的重要介质。但在低于1200℃时,钨轻微吸收氢气。钨和钼与氯气的反应:金属钨加热至500℃时,直接与氯气发生作用,生成WCl6,温度更高时,WCl6分解成WCl5。碘蒸汽对钨不起作用。钨和钼与水蒸气的反应:钨和钼容易与水蒸气发生氧化反应,这种作用在600℃以上更为急剧。
钼与钨的性能与应用
钼和钨是周期系ⅥB族元素,地壳中的丰度均为1.2ppm。18世纪前,一直误将辉钼矿(MoS2)和石墨混同于铅。1782年瑞典耶尔姆制得金属钼。重要的矿物是辉钼矿,还有钼酸钙矿(CaMoO4 )、钼酸铁矿(Fe2(MoO4)2·nH2O)。钨的主要矿物是黑钨矿(Fe,Mn)WO4 ,白钨矿(CaWO4 )。钼与钨是我国的丰产元素,其储量占世界首位,辽宁杨家杖子的辉钼矿闻名于世。钨的储量占世界总量的50%以上,以江西省的大庾岭等地为。
金属的性质与用途
钼和钨是银白高熔点金属,在常温下很不活泼,与大多数非金属(F2除外)不作用。在高温下易与氧、硫、卤素、炭及氢反应。钼和钨不被普通酸所侵蚀或溶解,但浓硝酸或热浓硫酸可侵蚀钼。这两种金属都溶于王水或HF和HNO3的混合物。它们不被碱溶液侵蚀,但被熔融的碱性氧化剂迅速腐蚀,如KNO3。它们的主要反应见图9—4。
钼和钨大量用于制合金钢,可提高钢的耐高温强度,耐磨性、耐腐蚀性等。在机械工业中,钼钢和钨钢可做刀具、钻头等各种机器零件;钼和金属的合金在制造,以及导弹火箭等尖端领域里有重要。此外,钨丝用于制作灯丝,高温电炉的发热元件。金属钼易加工成丝、带、片、棒等,在电子工业中有广泛应用。钼丝用作支撑电灯泡中加热丝的小钩,电子管的栅等。
跳转到: 导航,
搜索
为人体及动植物的微量元素。为银白金属,硬而坚韧。人体各种组织都含钼,体内总量为9mg,肝、肾中含量高。
基本字义:钼(钼)mù 一种金属元素。可用来生产特种钢,是电子工业的重要材料。
元素名称:钼(mù)
元素符号:Mo
元素英文名称:Molybdenum
元素类型:金属元素
原子体积:(立方厘米/摩尔) 9.4
元素在太阳中的含量:(ppm) 0.009
元素在海水中的含量:(ppm) 0.01
地壳中含量:(ppm) 1.5
相对原子质量:95.94
原子序数:42
质子数:42
中子数:54
所属周期:5
所属族数:VIB
电子层排布:2-8-18-13-1
氧化态:
Main Mo+6 ,Other Mo-2, Mo0,Mo+1, Mo+2, Mo+3, Mo+4,Mo+5
电离能 (kJ /mol)
M - M+ 685
M+ - M2+ 1558
M2+ - M3+ 2621
M3+ - M4+ 4480
M4+ - M5+ 5900
M5+ - M6+ 6560
M6+ - M7+ 12230
M7+ - M8+ 14800
M8+ - M9+ 16800
M9+ - M10+ 19700
晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。
晶胞参数:
a = 314.7 pm
b = 314.7 pm
c = 314.7 pm
α = 90°
β = 90°
γ = 90°
莫氏硬度:5.5
声音在其中的传播速率:5400m/s
1782年,瑞典的埃尔姆,用亚麻子油调过的木炭和钼酸混合物密闭灼烧,而得到钼。
1953年确知钼为人体及动植物的微量元素。
主要矿物是辉钼矿(MoS2)。
天然辉钼矿MoS是一种软的黑矿物,外型和石墨相似。18世纪末以前,欧洲市场上两者都以“molybdenite”名称出售。1779年,舍勒指出石墨与molybdenite(辉钼矿)是两种不同的物质。他发现硝酸对石墨没有影响,而与辉钼矿反应,获得一种白垩状的白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。他认为这种白粉末是一种金属氧化物,用木炭混合后强热,没有获得金属,但与硫共热后却得到原来的辉钼矿。1782年,瑞典一家矿场主埃尔摩从辉钼矿中分离出金属,命名为molybdenum,元素符号定为Mo。我们译成钼。它得到贝齐里乌斯等人的承认。
钼-99是钼的放射性同位素之一,他在医院里用于制备锝-99。锝-99是一种放射性同位素,病人服用后可用于造影。用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中。当钼-99衰变时生成锝-99,在需要时可把锝-99从容器中取出发给病人。
密度10.2克/立方厘米。熔点2610℃。沸点5560℃。化合价+2、+4和+6,稳定价为+6。钼是一种过渡
元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。在氧化的形式下,钼很可能是处于+6价状态。虽然在电子转移期间它也很可能首先还原为+5价状态,但是在还原后的酶中也曾发现过钼的其他氧化状态。钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁
后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X器材;钼耐高温
烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。
作用与应用:钼在机体的主要功能是参与硫、铁、铜之间的相互反应。钼是黄嘌呤氧化酶、醛氧化酶和发挥生物活力的因子,对机体氧化还原过程中的、嘌呤物质与含硫氨基酸的代谢具有一定的影响。在这三种酶中,钼以喋呤由来性辅助因子的形式存在。钼还能抑制小肠对铁、铜的吸收,其机制可能是钼可竞争性抑制小肠粘膜刷状缘上的受体,或形成不易被吸收的铜-钼复合物、硫-钼复合物或硫钼酸铜(Cu-MoS)并使之不能与血浆铜蓝蛋白等含铜蛋白结合。
膳食中的钼很易被吸收。但SO2-4因可与钼形成MoO42-而影响钼的吸收。同时SO42-还可抑制肾小管对钼的重吸收,使其从肾脏排泄增加。因此体内含硫氨基酸的增加可促进尿中钼的排泄。钼除主要从尿中排泄外,尚可有小部分随胆汁排出。
钼缺乏主要见于遗传性钼代谢缺陷,尚有报道全肠道外营养时发生钼不足者。钼不足可表现为生长发育迟缓甚至死亡,尿中尿酸、黄嘌呤、次黄嘌呤排泄增加。
钼为多种酶的组成部分,钼的缺乏会导致龋齿、肾结石、克山病、大骨节病、食道癌等疾病。
主要用于长期依赖的患者。
用法用量:口服,每日需用量0.1~0.15mg。
儿童每日需用量0.03~0.1mg。
【副作用】
过量的钼可引起。
【注意事项】
每日取量超过0.54mg,钼可增加铜从尿中排出。超过10~15mg时,则可出现痛风综合症。
在奶牛饲料中的应用量:10mg/d
人和动物机体对钼均有较强的内稳定机制,经口摄入钼化物不易引起。
据报告,生活在亚美尼亚地区的居民每日钼摄入量高达10~15mg;当地发病率高被认为与此有关。钼冶炼厂的工人也可因吸入含钼粉尘而摄入过多的钼。据调查,这些工人的血清钼水平、黄嘌呤氧化酶活性、血及尿中的尿酸水平均显著高于一般人群。
代谢吸收
膳食及饮水中的钼化合物,易被吸收。经口摄入的可溶性钼酸铵约88%-93%可被吸收。膳食中的各种含硫化合物对钼的吸收有相当强的阻抑作用,
硫化钼口服后只能吸收5%左右。钼酸盐被吸收后仍以钼酸根的形式与血液中的巨球蛋白结合,并与红细胞有松散的结合。血液中的钼大部分被肝、肾摄取。
在肝脏中的钼酸根一部分转化为含钼酶,其余部分与蝶呤结合形成含钼的辅基储存在肝脏中。身体主要以钼酸盐形式通过肾脏排泄钼,膳食钼摄入增多时肾脏排泄钼也随之增多。因此,人体主要是通过肾脏排泄而不是通过控制吸收来保持体内钼平衡。此外也有一定数量的钼随胆汁排泄。
功能
钼作为3种钼金属酶的辅基而发挥其生理功能。钼酶催化一些底物的羟化反应。黄嘌呤氧化酶催化次黄嘌呤转化为黄嘌呤,然后转化成尿酸。醛氧化酶催化各种嘧啶、嘌呤、蝶啶及有关化合物的氧化和。亚硫酸盐氧化酶催化亚硫酸盐向硫酸盐的转化。有研究者还发现,在体外实验中,钼酸盐可保护肾上腺皮质激素受体,使之保留活性。据此推测,它在体内可能也有类似作用。有人推测,钼酸盐之所以能够影响糖皮质激素受体是因为它是一种称为“调节素”的内源性化合物似。
生理需要
2000年中国营养学会根据国外资料,制订了中国居民膳食钼参考摄入量,适宜摄入量为60μg/d;高可耐受摄入量为350μg/d。
钼污染 (pollution by molybdenum),钼在地壳中的平均丰度为1.3ppm,多存在于辉钼矿、钼铅
矿、水钼铁矿中。矿物燃料中也含钼。天然水体中钼浓度很低,海水中钼的平均浓度为14微克/升。钼在大气中主要以钼酸盐和氧化钼状态存在,浓度很低,钼化物通常低于1微克/米。
环境中的钼有两个来源:
①风化作用使钼从岩石中释放出来。估计每年有1000吨进入水体和土壤,并在环境中迁移。钼分布的不均匀性,造成某些地区缺钼而出现“水土病”;又造成某些地区含钼偏高而出现“痛风病”(如苏联的亚美尼亚)。
②人类活动中愈来愈广泛地应用钼以及燃烧含钼矿物燃料(如煤),因而加大了钼在环境中的循环量。全世界钼产量每年为10万吨,燃烧排入环境的钼每年为 800吨。人类活动加入的循环量超过天然循环量。用钼多的是冶金、电子、导弹和航天、原子能、化学等工业以及农业。目前对钼污染的研究还很不够。
钼在环境中的迁移同环境中的氧化和还原条件、酸碱度以及其他介质的影响有关。水和土壤的氧化性愈高,碱性愈大,钼愈易形成MoO厈离子;植物能吸收这种状态的钼。环境的酸性增大或还原性增高,钼易转变成复合离子,形成MoO卂;这种状态的钼易被粘土和土壤胶体及腐植酸固定而失去活性,不能为植物吸收。在海洋中,深海的还原环境使钼被有机物质吸附后包裹于含锰的胶体中,形成结核沉于海底,脱离生物圈的循环。
钼对温血动物和鱼类的影响较小。高含量钼对植物有不良影响,试验表明:如钼浓度为0.5~100毫克/升时对亚麻生长产生不同程度的影响;10~20毫克/升时对大豆生长有危害;25~35毫克/升时对棉花生长有轻度危害;40毫克/升时对糖用甜菜生长有危害。水体中钼浓度达到5毫克/升时,水体的生物自净作用会受到抑制;10毫克/升时,这种作用受到更大抑制,水有强烈涩味;100毫克/升时,水体微生物生长减慢,水有苦味。中国规定地面水中钼高容许浓度为 0.5毫克/升,车间空气中可溶性钼高容许浓度为4毫克/米3,不溶性钼为6毫克/米3。
对环境的影响
一、健康危害
侵入途径:吸入、食入。
健康危害:对眼睛、皮肤有刺激作用。部分接触者出现尘肺病变,有自觉呼吸困难、全身疲倦、头晕、胸痛、咳嗽等。
二、毒理学资料及环境行为
急性毒性:LD506.1mg/kg(大鼠经口)
危险特性:其粉体遇高热、明火能燃烧甚至爆炸。与氧化剂能发生强烈反应。
燃烧(分解)产物:氧化钼。
3.现场应急监测方法
便携式比计(水质)(意大利哈纳公司产品)
4.实验室监测方法
硫氰酸盐比法《空气中有害物质的测定方法》(第三版)杭士平主编
火焰原子吸收法《空气中有害物质的测定方法》(第三版)杭士平主编
原子吸收法《固体废弃物试验分析评价手册》中国环境监测总站等译
5.环境标准
中国(TJ36-79) 车间空气中有害物质的高容许浓度 4mg/m3(可溶性化合物)
6mg/m3(不溶性化合物)
中国(GB/T14848-93) 地下水质量标准(mg/L) Ⅰ类0.001;Ⅱ类 0.01 ;Ⅲ类 0.1;Ⅳ类0.5 ;Ⅴ类 >0.5
中国(待颁布) 饮用水源水中有害物质的高容许浓度0.5mg/L
6.应急处理处置方法
一、泄漏应急处理
隔离泄漏污染区,周围设警告标志,切断火源。建议应急处理人员戴自给式呼吸器,穿化学防护服。使用不产生火花的工具小心扫起,避免扬尘,运至废物
处理场所。用水刷洗泄漏污染区,经稀释的洗水放入废水系统。如大量泄漏,收集回收或无害处理后废弃。
二、防护措施
呼吸系统防护:作业工人佩戴防毒口罩。必要时佩戴自给式呼吸器。
眼睛防护:戴化学防护眼镜。
防护服:穿防静电工作服。
手防护:戴防化学品手套。
其它:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。注意个人清洁卫生。
三、措施
皮肤接触:用肥皂水及清水彻底冲洗。就医。
眼睛接触:拉开眼睑,用流动清水冲洗15分钟。就医。
吸入:脱离现场至空气新鲜处。就医。
食入:误服者饮适量温水,催吐。就医。
灭火方法:干粉。
以钼为基体加入其他元素而构成的有合金。主要合金元素有钛、锆、铪、钨及稀土元素。钛、锆、
铪元素不仅对钼合金起固溶强化作用,保持合金的低温塑性,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼合金有良好的导热、导电性和低的膨胀系数,在高温下(1100~1650℃)有高的强度,比钨容易加工。可用作电子管的栅和阳,电光源的支撑材料,以及用于制作压铸和挤压模具,航天器的零部件等。由于钼合金有低温脆性和焊接脆性,且高温易氧化,因此其发展受到限制。工业生产的钼合金有钼钛锆系、钼钨系和钼稀土系合金,应用较多的是类。钼合金的主要强化途径是固溶强化、沉淀强化和加工硬化。通过塑性加工可制得钼合金板材、带材、箔材、管材、棒材、线材和型材,还能提高其强度和改善低温塑性。
《临床营养学》- 钼
出自A+医学百科 “钼”条目 转载请保留此链接