景德镇周边废钼回收哪家好
废钼回收的行业价值与市场前景
废钼回收是资源循环利用的重要环节,钼作为一种稀有高熔点金属,广泛应用于合金制造、电子工业和化工催化剂等领域。随着全球对稀缺资源需求的增长,废钼回收的经济价值日益凸显。据统计,回收1吨废钼可减少约80%的能源消耗,比原矿开采更具环保效益。目前,中国、美国和欧洲是废钼回收的主要市场,其中硬质合金废料、钼丝和废催化剂是主要来源。未来,随着新能源和高端装备制造业的发展,高品质钼的需求将持续上升,推动废钼回收行业向规模化、精细化方向发展。
在化学元素周期表中,钼元素不怎么引人注“钼”,它不像铝、铁那样常见,不如铂、金贵重,更不似氧、氢那般构成了生命的主体。然而,钼元素与人类的关系其实密切,而关于钼元素的方方面面,有一些趣事你可能并不了解。
钼曾被误认为铅
虽然早在14世纪,人们就懂得利用含钼的钢铁来锻造军刀,但那个时候,人们还没有意识到钼元素的存在。原因在于,钼元素在地壳中的含量约为百万分之一,分布也比较分散,属于比较稀有的金属。而且,钼元素往往不是以单质的形式存在,主要与硫结合成化合物,形成辉钼矿,或者偶尔与铅、铜组合,生成铅钼矿和铜钼矿。
16世纪之前,当人们发现辉钼矿的时候,看到它为铅灰,具有金属的光泽,而且辉钼矿多以细微柔软的鳞片状产出,具有挠性(金属或矿物受力发生变形,在作用力失去之后不能恢复原状的性质称为挠性,与“弹性”相对),摸起来还有种油腻的感觉。这和石墨的性质十分相似,所以辉钼矿被误以为是石墨。后来,人们在寻找铅矿石的时候,发现辉钼矿的外观类似于方铅矿,于是,又把钼误认为是铅。所以,人们便用古希腊语中的“molybdos”(意思是“铅”)命名辉钼矿。
直到1778年,德国化学家卡尔·舍勒才首次实,钼辉矿并不是方铅矿,也不是石墨,而是一种新的矿物,含有新的元素。但是,舍勒没有办法将这种新的元素从矿石中分离出来,所以他没能成为个发现钼元素的科学家。有趣的是,舍勒被后世称为“倒霉蛋科学家”,他的坏运气就是从错失钼元素开始的,后来舍勒又从空气可以助燃的实验现象中差点发现了氧气,但却因为迷信燃素说而将发现氧气的机会留给了安托万·拉瓦锡。
在舍勒之后,其他科学家也试图从辉钼矿中提取出新元素,他们让辉钼矿发生氧化反应,然后将粉末放入水中,形成钼酸,但仍然无法从中析出钼金属。终于,在1781年,瑞典化学家彼得·海基尔姆幸运地摘取了科学果实。他将碳粉、亚麻籽油和钼酸混在一起,搅拌成糊状,然后用封闭的坩埚对这一团“浆糊”加热。终于,海基尔姆用这样的“碳还原法”将新的金属从辉钼矿中分离出来,他随即将该金属命名为“钼”。至此,人们才开始了解到钼元素的真面目。
战争使钼名扬天下
1781年,人们开始懂得如何得到金属钼,但此后的100多年里,全世界金属钼的总产量也不超过10吨。由于钼元素易于氧化,且冶炼和加工水平有限,人们似乎还不知道如何将这种金属大规模地应用到工业生产中来。
不过,钼元素适合重工业的优点还是有目共睹的,它硬而坚韧、耐腐蚀、耐高温,熔点仅次于钨、钽,它注定会成为人类重要的工业原料。1891年,法国施耐德公司率先将钼作为合金元素生产出了含钼的钢板,发现其性能,而且钼的密度仅是钨的一半,钼便逐渐取代钨成为炼钢的合金元素。到了20世纪,人类爆发了两场规模空前的世界大战,统计资料显示,在次世界大战中,钼的年产量从数吨瞬间飙升到了100吨,而到了二战时期,又增长至1万吨。为何战争促进了钼的生产?这是因为它太有用了。
我们知道,“陆战”——坦克就是在一战中发明的。初,英国人为了增强坦克的防御力,给坦克安装了75毫米厚的锰钢板,但这种笨重的坦克在战争中表现得并不怎么样。后来,英国人通过试验,将锰钢板换成钼钢板,在不削弱防御力的前提下使得坦克的厚度减了50毫米,结果,更加机动灵活的坦克才得以大显神威。
同样,德国的攻坚——“大贝尔莎”巨炮,也是用钼钢做成的。一战前期,应德国总参谋部的要求,德国工业巨头克虏伯公司研制出了史无前例的重炮,并以古斯塔夫·克虏伯的妻子贝尔莎命名。“大贝尔莎”的口径为420毫米,炮身重43吨,需要200位德国军人花6个星期才能组装完毕。更吓人的是,“大贝尔莎”的重820千克,射程15千米,再坚固的工事也经不住它来这么一发。克虏伯之所以能够研制出威力如此惊人的巨炮,其秘诀就在于使用了材质的钼钢来制作炮身,因为当“大贝尔莎”发射时,只有耐高温的钼能够抵御产生的热量,以免熔化炮身。
到了第二次世界大战,钼元素同样发挥着重要的作用。当时,战场上的坦克莫过于德国的式坦克,其类型包含Ⅰ型和Ⅱ型两种。从1942年服役至1945年德国投降,式坦克一直活跃于战场线,它所向披靡,抵挡。不过,在库尔斯克会战中,苏联人俘获Ⅱ型坦克后对其进行了测试,发现Ⅱ型坦克并不像传说中的那样坚不可摧,虽然它装甲很厚,但是防御效果相对于Ⅰ型并未有较大提升。之所以出现这种状况,其实是由于德军所占领的挪威克纳本钼矿在1943年被盟军轰炸,从而使德军失去了钼的来源。战争初期,德军的Ⅰ型坦克都采用了钼钢,这种钼钢耐腐蚀,在高温条件下仍然具有较高的强度,而Ⅱ型坦克的厚装甲中已经无钼可用,所以影响了德军装甲部队的战斗力。
钼是多才多艺的金属
两次世界大战使人们意识到钼对于军事的重要作用,战后,钼的年产量由10万吨上升到如今的20多万吨。钼在“战争金属”美誉的同时,其应用范围也越来越广,是在核能、医疗等高科技领域发挥着越来越重要的作用。
2018年,俄罗斯的莫斯科工程物理学院的科学家们发表了一项关于核燃料保护套的研究,他们使用钼合金代替现有的锆合金来用作核燃料保护外壳,可以提高核电站的性。
在现有的核电站中,铀燃料棒是安装在锆合金保护外壳内的。锆合金具有很高的耐腐蚀性,而且锆几乎不会和中子反应,所以是好的核燃料棒保护外壳。但是,在端情况下,比如由于地震和海啸导致应急冷却系统出现故障时,核反应堆内冷却水的水平面会一直下降,使铀燃料棒处于裸露状态,那么冷却不足会使高温的锆合金外壳与高温水蒸气产生氢化作用(即锆水反应),这会导致反应炉熔毁以及氢气爆炸——2011年的日本福岛核电站事故就是这样发生的。如果想要避免类似的事故,办法之一就是寻找一种比锆合金更优秀的核燃料棒保护外壳,而在众多金属材料中,只有钼同时满足比锆更耐腐蚀、更耐热、有更高的导热性以及更小的中子截面积(意味着不与中子反应)的条件,因而特制的钼合金很可能会在未来成为核电站防护装置的主要材料。
钼元素还被应用于医疗实践。比如,锝99是应用广泛的放射性造影剂,不过,锝99只能由一种方式制备,那就是钼99衰变。钼99是钼的一种放射性同位素,它的半衰期为2.75天,半衰期过后,钼99衰变为锝99。钼99的半衰期理想,这个时间不但了钼原子在原料地到医疗场所的运输过程具有的稳定性,而且了锝99的放射性可以在短时间内。如果半衰期过短,在运输过程中,钼原子可能产生放射性辐射的危险;如果半衰期过长,将影响医疗诊断的效率。在核医学中,80%的医疗到了锝99,而在美国,每天使用锝99的诊断就达 55000多起,所以,钼的重要性不言而喻。
生命对钼很敏感
生物老师常常会讲一个故事:某一年,新西兰的一个牧场遭遇了干旱,大量牧草枯萎而死,但有一条矿工经常踩踏的小路边上生长着茂密的绿草。这是为什么呢?原来这里的矿场是钼矿,矿工们每天工作,身上难免会沾上矿渣,当他们走路时不经意间将矿渣撒落在小路上,就如同上天赐予的“大补丸”,给路边的小草提供了的养料。另外,科学已经明,对农作物施加钼肥,可以增强农作物的抗病、抗旱和抗旱能力,提高产量。比如,根据科学家的统计,每亩农田施加钼肥20克,可使小麦增产35%,而大豆则可增产47%,蚕豆增产8%,绿豆增产32.8%,番茄增产75%。
钼不仅是植物生长和发育中的微量元素,也是植物发挥固氮功能的重要元素。氮是生命之源,有了氮,植物才变得有营养。然而,植物并不能直接吸收空气中的氮气,它们需要在固氮菌的帮助下,通过化学反应将氮元素吸收并存储起来。固氮菌为植物固氮的过程很复杂,需要一种催化剂,名为固氮酶,金属钼正是固氮酶的重要成分。每年,植物固氮总量约1亿吨,远超过人工固氮量,这都是钼元素的功劳。
不仅植物需要钼,我们人体内也需要钼,只不过需量少。成年人体内大约只有9毫克钼,而且它们分散在身体的各个部分。虽然如此,我们对于钼还是敏感的。比如,钼与我们头发的颜有关,因为钼元素会使头发偏红褐。又比如,我们的情绪也容易受钼的影响,有它,我们会精力充沛,神气十足,缺少或无它,我们会感到疲惫不堪,浑身乏力。钼为什么有这么大的本事呢?原因在于,钼是两种在新陈代谢中起重要作用的酶的组成成分,一是黄嘌呤氧化酶,一是亚硫酸盐氧化酶。这两种酶有钼存在时才具有活力,没有钼,就会失去活力,起不了催化作用。
由于钼在食物中比较广泛地存在着,小麦、豆类、猪肉、牛奶、蜂蜜都含有钼,人对于钼的需要量也不高,所以我们一般不会缺钼。如果身体摄入多余的钼,反而会引起金属中毒。
由此看来,钼这种罕见的元素,与我们的日常生活还真息息相关呢。
钼的及投资策略
1、战争金属一一钼
钼是一种银白的坚硬金属,具备一身耐主温的好本领,其溶点 高达2620C,是一种珍贵的稀有高熔点金属及重要的战略性物质。
钼以多种形态存在,一般将钼产品分为:钼炉料新产品(钼精矿、 氧化钼、钼铁),钼化工新产品(钼酸铵、钼酸钠、钼酸钡),钼金属 制品(钼粉、钼条、钼板、钼棒、钼丝、钼异件)。
钢铁工业是钼的消费大户,主要作为生产合金钢、不锈钢、耐热 钢和合金铸铁等的重要合金元素,作为钢铁行业的添加剂有金属钼 条、钼铁和钼酸钙。钢中含钼量低于 1%时,用工业氧化钼块;当钢 中钼含量高于1%时,常用钼铁、耐热合金和耐腐蚀合金中都添加了 1%-2%的钼,钼含量越高耐腐蚀性越好,作此种添加剂一般使用金属 钼。钼及其合金具有良好的导热性、导电性、低热膨胀系数、耐高温 性、低蒸气压、耐磨性、耐腐蚀性和化学稳定等特性。
尽管钼主要应用于钢铁行业,但由于钼本身具有多种特性,它在 其它合金领域及化工领域的应用也不断扩大。当今,金属钼、钼合金 和钼的化合物广泛地用于航空航天、 军事工业、核工业等现代技术的 很多领域中。例如,钼可用于火箭、导弹部件,如喷嘴、发动机的燃 气轮片、冲压发动机喷管、火焰导向器及燃烧室等。在液体燃料火箭 发动机上广泛使用金属钼和钼合金(如 Mo-0.5Ti-0.08Zr)作燃烧室、 喉部管套筒。是宇宙飞船发射和返回通过大气层时, 由于速度快,暴露于空气中的部件温度高达 1482-1464C,因而采用钼做蒙 皮、喷管、火焰挡板、翼面及导向叶片等。钼具有热中子捕获截面较 小,有持久强度,对核燃料的稳定性能和抵抗液体金属的腐蚀等特性, 故用作核反应堆的结构材料,如隔热屏等。
钼之所以被称为 战争金属”原因很简单:把钼加到钢里,钢的 强度、韧性及及耐高温、抗腐蚀的本领都会得到很大的提高。早在上 世纪一战时期,钼的合金钢就被广泛应用于制造枪炮筒、装板、坦克 和其他装备,因为枪炮同弹打交道,不坚硬强韧、不抗腐蚀是 根本不行的。直到现在,钼仍是重要的战备物资,全世界大部分的钼 仍被用来制造枪炮、装甲车、坦克等战争。并且随着时代的进步, 钼还被广泛应用于航空航天、核工业等国防军工领域,可以看出,把 钼称为战争金属”是再合适不过的了。
2、中国钼资源行业堪比稀土
我国的钼资源无论从行业基本面还是从战备价值方面, 堪比稀土
毫不为过。
目前,钼资源探明总储量为890万吨,分布呈现高度的不均 衡状态,主要分布在中国及美洲的科迪勒拉山系。 中国是大的 钼资源国,根据美国地质勘探的统计资料显示, 中国的钼资源占钼资源储量的38.4%及储量基础的43.7%;美国是世界第二大钼资 源国,占钼储量及储量基础的分别为 31.4%和 28.4%。智利排名 第三,其钼储量几乎全集中在三个世界级特大型铜钼矿床(埃尔特尼 思特、丘基卡马塔和埃尔萨尔瓦多)中,占钼储量及储量基础的 分别约12.8%和13.2%;加拿大、俄罗斯和亚美尼亚也是钼资源较为 的国家。作为一种重要的不可再生的稀缺战备资源,日本、俄罗 斯等大国先后建立了钼的战备储备。
据加拿大金属经济小组年的数据显示,2009年钼产量约19 万吨,虽然较2008年的产量有所下降,但1998年至2009年的11年 期间,钼产量的年均增长率仍为 3.33%。
钼资源储量位居世界前三的中国、美国和智利同样也是前三 大钼生产国。据美国国家地质调查的数据显示,中国、美国和智利 的钼产量分别占总产量的 38.5%、25%、16%,这三个国家的钼 产量占钼产量近80%,此外秘鲁和加拿大也有的产蛳。2008 年26座矿山的钼金属储量/资源量合计1560.7万吨,平均品 位0.016%,生产总能力为18.3万吨(金属量),其中铜矿山的副新产 品钼约占40%。可见,钼生产格集中。
2009年,受低迷钼价影响,中国国内除金钼股份和洛钼集团这 两家大型钼矿山企业的产量仍在增长外,中小型钼矿山普遍开工不 足。河南地区钼矿山1季度开工率仅在60%左右;内蒙除中钢外,大 多数企业到2季度才逐步复产;辽宁除新华钼业外大多处于停产状 态;河北、浙江的企业也都采取减产措施。尽管中钢金鑫、龙宇公司 和金钼汝阳等项目陆续实现投产,但 2009年我国钼精矿产量仍比上 年同比下降10%至7.3万吨钼。
据中国有金属工业协会的统计数据显示, 2010年上半年
我国钼精矿产量为45344吨钼,同比增长13%。其中,河南省产量同 比增长6.6%至21055吨钼,陕西省产量同比增长16.2%至8795吨钼, 内蒙古产量同比增长119.8%至 6270吨钼,以上地区产量占总产量的 79.7%。
3、钼价:后市仍具上涨空间
1 编制目的
为贯彻落实《中华人民共和国土壤污染防治法》,指导和规范土壤污染重点监管单位开展土壤环境自行监测工作,制定本指南。
2 适用范围
本指南适用于指导土壤污染重点监管单位中工矿企业开展土壤及地下水自行监测工作,生活垃圾填埋场等其他行业按照GB16889等有关标准执行。重点单位的划分以陕西省生态发布的土壤污染重点监管单位名录为准。
3 规范性引用文件
本指南内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本指南。
GB 36600 土壤环境质量 建设用地土壤污染风险管控标准(试行)
GB16889 生活垃圾填埋场污染控制标准
GB 50021 岩土工程勘察规范
GB/T 14848 地下水质量标准
GB/T 4754 国民经济行业分类
HJ 682 建设用地土壤污染风险管控和修复术语
HJ 25.1 建设用地土壤污染状况调查技术导则
HJ 25.2 建设用地土壤污染风险管控和修复监测技术导则
HJ 25.3 建设用地土壤污染风险评估技术导则
HJ 819 排污单位自行监测技术指南总则
HJ 164 地下水环境监测技术规范
HJ/T 166 土壤环境监测技术规范
4 术语和定义
下列术语和定义适用于本指南。
4.1 土壤 soil
土壤是指由矿物质、有机质、水、空气及生物有机体组成的地球陆地表面的疏松层。
4.2 地下水 groundwater
地下水是指以各种形式埋藏在地壳空隙中的水,含包气带和饱和带中的水。
4.3 自行监测 self-monitoring
指排污单位为掌握本单位的污染物排放状况及其对周边环境质量的影响等情况,按照相关法律法规和技术规范,组织开展的环境监测活动。
4.4建设用地land for construction
建设用地是指建造建筑物、构筑物的土地,包括城乡住宅和公共设施用地、工矿用地、交通水利设施用地、旅游用地、军事设施用地等。4.5 重点区域 suspected areas of contamination
具有土壤或地下水污染隐患的区域,如有毒有害物质的生产区,原材料或固体废物的堆存区、储放区和转运区等。
4.6 重点设施 key facilities
具有土壤或地下水污染隐患的设施,如涉及贮存或运输有毒有害物质的罐槽、管线等。
4.7 关注污染物 contaminants of concern
根据地块污染特征、相关标准规范要求和地块利益相关方意见,确定需要进行土壤污染状况调查和土壤污染风险评估的污染物。5 自行监测的一般要求
5.1 制定监测方案
重点监管单位应识别本单位存在土壤及地下水污染隐患的区域或设施并确定其对应的关注污染物,制定自行监测方案。监测方案应包括下列内容:单位基本情况、监测点位及示意图、监测、执行标准及其限值、监测频次、采样和样品保存方法、监测分析方法、质量与质量控制等(监测方案大纲见附录A)。
5.2 开展自行监测
重点监管单位应根据本指南要求,依据自行监测方案,自行或委托第三方开展土壤和地下水自行监测工作。
原则上对于地下水埋藏条件不适宜开展地下水监测的单位或者同时满足下述条件的单位可暂不开展地下水监测:
(1)含水层埋深大于15 m;
(2)关注污染物中不存在易迁移的污染物(如六价铬、氯代烃、石油烃、苯系物等);
(3)土层参照《岩土工程勘察规范》(GB 50021)分类方法归类为粉土及黏性土等低渗透性土壤;
(4)企业周边1 km范围内无饮用水源地保护区、补给区等地下水敏感区域。
5.3 建设并维护监测井(点)
重点监管单位应按照相关监测规范要求建设满足开展监测所需要的监测井(点),并进行维护。
5.4 记录、保存监测数据,依法公开监测结果
重点监管单位应记录和保存监测数据、分析监测结果,编制年度监测报告,并依法向社会公开监测结果。
6 监测方案制定
6.1 重点设施及区域识别
6.1.1 资料搜集
搜集的资料主要包括单位基本信息、单位内各区域及设施信息、迁移途径信息、敏感受体信息、地块已有的环境调查与监测信息等(具体见表6-1)。
表6-1 应搜集的资料清单
6.1.2 重点设施及区域识别
对本章6.1.1节调查过程和结果进行分析、总结和评价。根据各设施信息、关注污染物类型、污染物在土壤和地下水中的迁移转化途径等,识别单位内部存在土壤及地下水污染隐患的重点设施,在单位平面布置图中标记,按照附录B所示格式填写信息记录表,记录重点设施相关信息。
重点设施数量较多的单位可根据重点设施在单位的分布情况,将排放污染物类似且相距较近的多个设施,合并作为一个重点区域,在单位平面布置图中标记。
具有土壤或地下水污染隐患的设施包括但不限于:
1)涉及有毒有害物质的生产区或生产设施;
2)涉及有毒有害物质的原辅材料、产品、固体废物等的贮存或堆放区;
3)涉及有毒有害物质的原辅材料、产品、固体废物等的转运、传送或装卸区;
4)贮存或运输有毒有害物质的各类罐槽或管线;
5)三废(废气、废水、固体废物)处理处置或排放区。
6.2 监测点位布设
6.2.1 点位布设原则
重点监管单位自行监测点/监测井应布设在重点设施周边并尽量接近重点设施。重点设施数量较多的单位可根据重点区域内部重点设施的分布情况,统筹规划重点区域内部自行监测点/监测井的布设,布设位置应尽量接近重点区域内污染隐患较大的重点设施。
监测点/监测井的布设应遵循不影响单位正常生产、不造成隐患与二次污染且利于监测的原则。
纳入重点行业企业用地调查的单位点位布设可按重点行业企业用地调查确定的监测点位开展监测。
6.2.2 对照监测点
应在重点监管单位外部区域或单位内远离各重点设施(区域)处布设至少1个土壤及地下水对照点。对照点应不受单位生产过程影响且可以代表单位所在区域的土壤及地下水本底值。
土壤监测对照点应设置于重点设施(区域)污染物迁移的上游,原则上在重点监管单位边界30m范围内布设。
地下水对照点应设置在重点设施(区域)地下水径流的上游区域。地下水对照点监测井应与污染物监测井设置在同一含水层。
6.2.3 土壤监测点位布设
重点监管单位自行监测遵循以下原则确定土壤监测点的数量、位置及深度:
(1)点位数量及位置
每个重点设施周边应至少布设1-2个土壤监测点,每个重点区域周边至少布设2-3个土壤监测点。监测点具体数量可根据待监测区域大小等实际情况进行适当调整。
(2)采样深度
土壤监测应以表层土壤(0-20 cm)为重点采样层,开展采样工作。存在液体污染物的重点设施(区域)周边点位应采集不同深度的土壤样品。
6.2.4 地下水监测井的布设
重点监管单位自行监测应设置地下水监测井开展地下水监测工作,并按照《地下水环境监测技术规范》(HJ 164)中4.3.3要求确定监测井数量和位置。单位内或邻近区域内现有的地下水监测井,如果符合本指南要求,可以作为地下水对照井或污染物监测井。
采样深度按以下原则确定:
监测井在垂直方向的深度应充分考虑季节性的水位波动,并根据污染物性质、含水层厚度以及地层情况确定。
1)污染物性质
① 当关注污染物为低密度污染物时,监测井进水口应穿过潜水面以能够采集到含水层顶部水样;
② 当关注污染物为高密度污染物时,监测井进水口应设在隔水层,含水层的底部或者附近;
③ 如果低密度和高密度污染物同时存在,则设置监测井时应考虑在不同深度采样的需求。
2)含水层厚度
① 厚度小于6 m的含水层,可不分层采样;
② 厚度大于6 m的含水层,原则上应分上中下三层进行采样。
3)地层情况
地下水监测以浅层地下水为主,如浅层地下水已被污染且下游存在地下水饮用水源地,需增加主开采层的监测点。
6.3 监测项目
重点监管单位应根据本指南6.1“重点区域及设施识别”结果,参照附录C中单位所属行业类型及关注污染物,选择确定每个重点区域或设施需监测的关注污染物类别及项目(需测试每个重点设施或重点区域涉及的关注污染物,不同设施或区域的分析测试项目可以不同)。本指南未提及其所属行业的单位,应根据单位具体情况,在附表C-1“常见关注污染物类别及项目”中自行选择分析测试项目。原则上每个重点区域或设施应监测的污染物项目不少于2项。
对于以下项目,重点监管单位应在自行监测方案中说明原因:
1)在附表C-2中有列举,但单位认为不需监测的行业关注污染物项目;
2)在附表C-2中未提及单位所属行业,由单位自行选择的关注污染物项目。
不能说明原因或理由不充分的,应对所列类别污染物进行分析测试。
6.4 监测频次
重点监管单位每年至少开展一次土壤监测和一次地下水监测,地下水监测应在枯水期开展。
6.5 地下水监测井的建设与维护
6.5.1 监测井的建设
重点监管单位地下水采样井应建成长期监测井。监测井的建设过程可参照《地下水环境监测技术规范》(HJ 164)的要求进行。
6.5.2监测井井口的保护
为保护监测井,应建设监测井井口保护装置,包括井口保护筒、井台或井盖等部分。监测井保护装置应坚固耐用、不易被破坏。
井口保护筒宜使用不锈钢材质;井盖需加异型锁;依据井管直径,可采用内径为 24 cm~30 cm、高为50 cm的保护筒,保护筒下部应埋入水泥平台中 10 cm 固定;水泥平台为厚 15 cm,边长 50 cm~100 cm的正方形平台,水泥平台四角须磨圆。
无条件设置水泥平台的监测井可考虑使用与地面水平的井盖式保护装置。
6.5.3 监测井的维护和管理
应指派专人对监测井的设施进行经常性维护,设施一经损坏,及时修复。
地下水监测井每年测量井深一次,当监测井内淤积物淤没滤水管,应及时清淤。
每2年对监测井进行一次透水灵敏度试验。当向井内注入灌水段 1 m 井管容积的水量,水位复原时间超过 15 min 时,应进行洗井。
井口固定点标志和孔口保护帽等发生移位或损坏时,及时修复。
7 样品采集、保存、流转及分析测试技术
7.1 样品采集
7.1.1 土壤样品采集
土壤样品采集方法参照《场地环境监测技术导则》(HJ 25.2)的要求进行。
7.1.2 地下水采样
地下水监测参照《地下水环境监测技术规范》(HJ 164)的要求进行。
7.2 样品保存
样品保存涉及采样现场样品保存、样品暂存保存和样品流转保存要求,样品保存应遵循以下原则进行:
a)土壤样品保存参照《土壤环境监测技术规范》(HJ/T 166)的要求进行;
b)地下水样品保存参照《地下水环境监测技术规范》(HJ 164)的要求进行;
c)监测单位应与检测实验室沟通确定样品保存方法及保存时限要求;
d)现场样品保存。采样现场需配备样品保温箱或其他设施,样品采集后在4 ℃低温保存;
e)样品暂存保存。如果样品采集当天不能将样品寄送至实验室进行检测,样品需在4 ℃低温保存;
f)样品流转保存。样品寄送到实验室的流转过程要求在4 ℃低温保存流转。
7.3 样品流转
7.3.1 装运前核对
在采样小组分工中应明确现场核对负责人,装运前应进行样品清点核对,逐件与采样记录单进行核对,保存核对记录,核对无误后分类装箱。如果样品清点结果与采样记录有不同,应及时查明原因,并进行说明。
样品装运同时需填写样品运送单,明确样品名称、采样时间、样品介质、检测、检测方法、样品寄送人等信息。
7.3.2 样品流转
样品流转运输的基本要求是样品和及时送达。样品应在保存时限内尽快运送至检测实验室。运输过程中要有样品箱并做好适当的减震隔离,严防破损、混淆或沾污。
7.3.3 样品交接
实验室样品接收人员应确认样品的保存条件和保存方式是否符合要求。收样实验室应清点核实样品数量,并在样品交接单上签字确认。
7.4 样品分析测试
样品的分析测试方法应优先选用国家或行业标准分析方法,尚无国家或行业标准分析方法的监测项目,可选用行业统一分析方法或行业规范。
8 质量及质量控制
重点监管单位自行监测过程的质量及质量控制,除应严格按照本指南的技术要求开展工作外,还应严格遵守所使用检测方法及所在实验室的质量控制要求。
重点监管单位利用自有人员、场所和设备自行监测的应按照排污单位自行监测技术指南总则(HJ 819)中“监测质量与质量控制”的要求执行。相应的质控报告应作为样品检测报告的技术附件。
委托开展自行监测的企业,应委托具有中国计量认(CMA)资质的检测机构进行。
9 结果分析及报告
9.1 监测结果分析
重点监管单位应根据本指南要求开展自行监测并对监测结果进行分析,以下情况可说明所监测重点设施或重点区域已存在污染迹象:
a)关注污染物浓度超过相应标准中与其用地性质或所属区域相对应的浓度限值的(各监测对象限值标准按照表9-1执行);
b)关注污染物的监测值与对照点中本底值相比有显著升高的;
c)某一时段内(2年以上)同一关注污染物监测值变化总体呈显著上升趋势的。
表9-1 各监测对象相应限值标准
对于已存在污染迹象的监测结果,应排除以下情况:
a)采样或统计分析误差,此时应重新进行采样或分析;
b)土壤或地下水自然波动导致监测值呈上升趋势的(未超过限值标准);
c)土壤本底值过高或企业外部污染源产生的污染导致的污染物浓度超过限值标准;
对于存在污染迹象的重点设施周边或重点区域,应根据具体情况适当增加监测点位,提高监测频次。
9.2 监测报告编制
重点监管单位应当结合年度自行监测报告,增加土壤及地下水自行监测相关内容。土壤及地下水自行监测报告内容主要包括:
a)重点监管单位自行监测方案;
b)监测结果及分析;
c)单位针对监测结果拟采取的主要措施。
10 监测管理
重点监管单位应按照相关要求对自行监测结果进行信息公开,并对监测结果及信息公开内容的真实性、准确性、完整性负责。
重点监管单位应积配合并接受生态环境行政主管部门的日常监督管理。
11 附则
本指南自发布之日起实施,国家对重点监管单位土壤和地下水环境自行监测相关规定发布后执行国家规定。
钼矿是一种高熔点金属矿石(2610 ℃)和耐高温性、耐腐蚀性、良好的导热性和导电性、高强度和硬度(莫氏硬度5.5)和低热膨胀系数。由于钼的这些性质,它被广泛应用于航空航天领域、电子器件、化工、广泛应用于石油钢铁等领域。然而,钼资源有限且分布不均,其开发利用需要考虑可持续性和资源管理问题。此外,钼矿石通常比较复杂,含有其他矿物和杂质,需要精炼和熔炼才能获得高纯度的金属钼。此外,钼矿床还可能含有其他矿物,如方铅矿(Galena)黄铜矿(chalcopyrite)黄铜矿(sphalerite)等。由于地质条件和矿床类型不同,具体的矿物成分也会有所不同。钼矿的矿物组成探索、它在开采和精炼过程中起着重要的指导作用,决定了钼矿石的特性和精炼工艺的选择。
钼矿常呈黑、铅灰或深灰,有金属光泽或半金属光泽。这种泽特征对矿石的初步鉴定和分类有参考价值,也有助于钼矿石与其他类似矿石的区分。,钼矿不透明,没有透明度。
钼矿的物理性质对其勘探、开采和利用的过程有着重要的影响。首先,钼矿的密度很高,通常为10.2 g/cm³。其次,钼矿石的硬度很高,一般在5-5.5之间。这就要求在钼矿破碎磨矿过程中采用相应的设备和工艺,以的破碎和细磨作业。
此外,钼矿的断口呈贝壳状或贝壳状。这是由于钼矿物的解理性质和晶体结构,在矿石鉴定和表征过程中具有重要价值。
钼矿的形态特征可能因矿床类型和产矿环境的不同而不同以下是钼矿常见的形态特征:
片状或鳞片状结构
辉钼矿是常见的钼矿之一,通常呈片状或鳞片状结构。这些片状结构可以在矿石中形成夹层或簇。辉钼矿的片状结构可呈现金属光泽,并具有一定的延展性和柔韧性。
黑或铅灰
钼矿通常呈黑或铅灰,因为其主要成分是硫化钼。辉钼矿、辉钼矿辉钼矿等钼矿物常呈此。其颜有助于进行初步的鉴别和区分。
钼矿的晶体形态可以根据其晶体结构来确定。以辉钼矿为例,其晶体结构为六方,形成六方片状晶体。其他钼矿物,如辉钼矿,具有不同的晶体结构和形态。
包裹体和胶结状
在某些矿床中,钼矿物可以以包裹体或胶结物的形式存在。这些包裹体由不同矿物或岩石包裹钼矿物组成,形成复合矿物结构。胶结型钼矿物是由于矿床中含有钼矿物的胶结物质的存在,导致胶体结构的形成。
矿脉状
在某些矿床中,钼矿物可以以脉状存在。矿脉是岩石裂缝或断层中形成的矿物填充物。钼矿矿脉可以是纵向的、横向或扭曲,其形状和分布对勘探和开发具有重要意义。