安徽专业回收废钼厂商地址
废钼回收的环保意义与政策支持
钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。
摘要:从铜含量为0.77%~1.32%之间的铜渣中回收金属,回收金属主要为铜;然而一些渣也含有0.4%左右的钼,有可能将熔融的铜渣变为一种新原料来开发新工艺,得到新产品。从这点来讲,使用焙烧-浸出工艺处理铜渣是为了回收渣中的钼,用氧化焙烧法将氧化铁转化为不溶性赤铁矿,而铜和钼转化为可溶态溶于酸溶液。因为钼与氧化铁类晶石相结合,在浸出过程中它的还原会受四氧化三铁成分影响,使用硫酸进行渣浸出,钼的回收率超过80%。因此,使用两段工艺,即氧化焙烧后酸浸对钼进行回收,得到的结果表明这种方法的可行性。
0前 言
当前,受经济、环境及金属高消费问题的影响,迫使人们开发更经济有效、从二次资源中回收有价金属的方法得到了推广。智利每年要产出含铜量为0.77%~1.32%、含钼0.4%及大量的铁和二氧化硅的铜渣超过350万t,因而,在循环利用金属萃取工艺上,铜渣就显示出了它的经济潜力[1]。
从铜渣中萃取金属有许多湿法冶金方面的建议,这包括直接从硫酸或氯化铁中浸出,也有将渣与硫酸、硫酸铵、硫酸铁焙烧或在还原的条件下酸浸这方面的报道。然而,的报道都是涉及铜和钴或镍还原方面,关于通过湿法冶金工艺从铜渣中回收钼的数据少有报道[4-8]。
因此,有人提议焙烧低品位的钼精矿与石灰或碳酸钠,将钼转化为钼酸盐,也有人研究将废催化剂与碳酸钠焙烧,还原可溶性钼酸盐[9-12]。因此,生产钼有效的方法是将钼精矿焙烧得到三氧化钼,随后对三氧化钼进行还原得到金属钼[12]。所以,本工作的重点是研究氧化物经过焙烧后酸浸,从铜渣中回收钼的可行性。
1从理论上讲
铜渣中的矿物学成分及所呈现的相取决于加
工矿物的类型、炉子的类型及冷却方法等几方面的因素。缓冷导致渣的组分有相当数量的结晶,形成大量的不同矿物相,冷却的速度越慢,矿物相增长越大;缓冷速度快,有可能产生非晶体渣,因而金属在渣中分布越均匀[14]。当铜渣是晶体时,主相通常是伴有硅酸盐的硅酸铁盐及金属氧化物,铜以氧化物或硫化物或两者的混合体存在。
在铜的回收过程中,比较典型的铜渣分析显示,钼分散在整个氧化铁相中,钼高度氧化,并与四氧化三铁的化学结构相结合,如图1所示。
在冶炼前,由于钼从硫化铜矿中浮选的效率低,所以钼出现在渣中。同时,也有报道说钼与属于2FeO·MoO2-Fe3O4系列的尖晶石结合,浸出率低[15]。
在熔融状态下,除了带入液体的一些铜及硫化铜以外,从化学性质上讲,渣是均质的,在急速冷却条件下,它仍保持均质状态。当渣缓慢冷却时,它不会过氧化,且至少可能形成两种固体相:硅酸亚铁和部分被氧化成的四氧化三铁,铜仍为硫化物;这种条件下通常通过浮选回收铜。然而,根据以下反应,铜、硫化铜及氧化铜在高度氧化焙烧条件下,温度在600~800 ℃时,能被转化。
Cu+1/2O2=CuO (1)
Cu2S+2O2=2CuO+SO2 (2)
Cu2O+2/3O2=2CuO (3)
在这些条件下,当温度达到800~1 100 ℃之间时,硅酸铁在有氧条件下分解,具体如下:
2FeO·SiO2+1/2O2=Fe2O3+SiO2 (4)
2FeO·SiO2+1/3O2=2/3Fe2O3+SiO2 (5)
根据以下反应,钼从它与氧化铁的尖晶石的组合物中分离出
2FeO·MoO2·Fe2O3+O2= 2Fe2O3+MoO3 (6)
图2实验室实验的结构图
因而,氧化焙烧会使铁硅酸盐分解,形成不溶于酸溶液的四氧化三铁和二氧化硅,这样在室温条件下,经过焙烧工序处理的产品就很容易通过酸浸进行处理,钼的还原效果就好,铜仍留在渣里面。
2实 验
缓冷和速冷却的系列冶炼铜渣的化学特性,如表1所示。
表1系列冶炼铜渣的化学性质* %
在一个典型的试验中,渣在实验室的管式Lindberg-Blue 炉0.5 cm厚的固定床上进行焙烧,条件如下:温度700 ℃,所用气体中混有90%的空气及10%的二氧化硫,物料粒度400目为100%,所得到的煅烧砂使用标准浸出测试法用如下条件在实验室中浸出:温度为18~20 ℃,硫酸为50 g/L,液固比为10∶1,物料粒度200目为100%,如图2所示浸出2 h。进行浸出测试以确定不经过煅烧步骤渣的溶解性,条件如下:温度为20 ℃,硫酸150 g/L,液固比为10∶1。
空气与二氧化硫混合是为了评估使用冶炼烟气促成四氧化三铁反应的可行性,正如以前报告中提到的计划那样,增加铜渣的商用价值[17]。
3结果与讨论
图3显示的是使用扫描电镜技术扫描到的缓冷渣的特性,微探针分析显示的是沉积的氧化物及硅酸盐的络合物,钼在这里形成了一个Fe-Mo-O的分离相,如1#、2#和4#相所示,络合物中铁的含量在52.03%~63.57%之间,钼含量在1.25%~6.35%之间。同时,这些相中二氧化硅的含量低,表明铁能在磁铁矿中呈现如FeO·MoO2-Fe3O4样的尖晶石结构,3#相显示的是玻璃状的铁硅酸盐型含钼量低的二氧化硅富集溶液。
图4是渣的扫描电镜分析,如图4a所示,可观察到铁分布在整个玻璃状的铁硅酸盐相中;图4b显示的是钼散布在渣中并与铁的分布路径紧邻的硅酸盐相。
铁的高萃取率表明铁硅酸盐的主要部分分解,这导致酸的消耗及溶液中胶态氧化硅增加,也增加了后期钼分离的难度。每吨渣所消耗的硫酸量在800~1 000 kg,溶液中的二氧化硅的富集量在10~15 g/L。
如图5所示,含不同成份磁铁矿的渣使用焙烧-浸出工艺,可观察到渣随着钼还原量的增加,四氧化三铁含量减少。
由于钼与氧化铁尖晶石结合在一起,酸浸不易分解,需要氧化成为钼的易溶态或氧化钼,这样才能在浸出过程中溶解,铁被氧化成为氧化铁,以便对钼进行选择性浸出。
在氧化过程中,氧化铁尖晶石转化为氧化铁,钼从铁尖晶石相中分离出,同时也被氧化成为它的高氧化态并反应生成热稳定的合成物,该合成物可以从氧化铁及硅酸盐合成物中不受限进行选择性浸出。
这里应当注意渣的熔点,这些合成物可以互溶,且由于氧化亚铁和四氧化三铁决定了铜渣的氧化态,可以得出钼的还原态为Mo4+。
因为渣中钼的浓度比较低,与以高的浓度并以Fe2+及Fe3+氧化物形态存在的氧化铁相比,很难经过分析实二氧化钼的存在。然而,有一点清楚,渣与四氧化三铁尖晶石晶化,形成二氧化钼固溶体,钼的浸出率低。
4结 论
铁和钼分布在整个玻璃状硅酸盐相,且在渣中钼的分布与铁的分布路径紧紧相邻,因此,钼主要与氧化铁尖晶石相结合。
由于氧化反应破坏了渣的结构,产生赤铁矿及方晶石,氧化铁及二氧化硅成为渣的主要成份,二氧化硅相中也应当有次要的氧化物成份出现,因而,在被氧化的渣中,硅酸盐及氧化铁就成为预期的两个主要的基本相。
人们普遍认为,渣氧化的结果是钼和铁被氧化成高氧化态,因而使用酸浸工艺就可以将钼从渣的氧化微粒中选择性浸出。
渣中的四氧化三铁显示,钼是嵌入在尖晶石固体相中,说明它在酸溶液中的溶解度低。然而,渣的溶解度测试结果显示,当渣中的四氧化三铁含量减少时,钼的萃取率提高,这对渣的焙烧转化同样有效。
你听说过钼吗?
看到金字旁,你应该可以猜到,它是元素周期表上的一员吧。
没错,它是元素周期表上的第42号元素,也是地壳中第54种常见的元素,不仅存在于自然中,我们每个人的体内也有。
尽管钼存在于我们人的身体中,而且对人体健康重要,但它却异常低调,鲜为人知。
你平时有没有经常食用,含有这种重要微量营养素的食物?让我们找出,但首先要了解它到底是什么。
钼(Mo),它是自然界中的一种化学元素,也是人类、动物和植物健康所的微量矿物质,被认为是一种金属元素。
钼单质是一种银白金属,具有高的熔点,并且耐腐蚀,但它在地球上不是以单质存在的金属,而是在矿物中,以各种氧化态存在。
这种微量矿物质在自然界中,广泛存在于固氮细菌、地壳、土壤和水中。
→钼(Mo)的功能
人体需要钼来分解营养素,辅助酶相关过程,代谢铁,以及有害物质的积累。
它可作为4种重要酶的辅助因子,参与体内的4种酶促反应:
1、亚硫酸盐氧化酶:这种酶将亚硫酸盐(SO2-),转化为硫酸盐(SO3-),硫酸盐可以很容易地并从体内排出。
它是人体能够分解含硫氨基酸,如蛋氨酸和半胱氨酸,所的,如果这种酶不能正常工作,这可能导致高蛋氨酸血症或高同型半胱氨酸血症等疾病。
亚硫酸盐氧化酶也可能在硝酸盐形成的一氧化氮中发挥作用。
2、醛氧化酶:这是一种分解体内醛类的酶,醛类是代谢酒精等物质的结果,从体内,因为它们在体内具有强的反应性和毒性。
3、黄嘌呤氧化酶:这种酶将黄嘌呤转化为尿酸,黄嘌呤是由核苷酸的代谢产生的,如DNA和RNA;尿酸是体内有效的抗氧化剂,有助于对抗氧化应激。
4、线粒体氨基肟还原成分:这种酶的确切酶学功能尚不清楚,但目前科学家认为,它在体内起着一些作用,包括物和毒素的。
5、形成四硫钼酸盐:该物质能与铜分子结合,其吸收,还能与血液中未结合的铜结合,其引起过量的氧化应激,这种物质可用于治疗威尔逊病。
在人体中,它主要位于肝脏,肾脏,腺体和骨骼中,也可以在皮肤,肌肉,肺和脾脏中找到。
钼通过肠道吸收,主要流向肝脏和肾脏,在那里它被整合到许多酶中。
如果过量摄入钼(Mo),它会被,并通过尿液从肾脏排泄。
这种微量矿物质有多种形式,常包括以下类型:
钼酸铵;
天冬氨酸钼;
柠檬酸钼;
甘氨酸钼;
吡啶甲酸钼;
钼酸钠;
钼在日常生活中,可以用来制造工业钼润滑脂,钼钢(石油和天然气,能源,建筑和汽车行业采用的材料,具有高耐腐蚀性和耐高温性);钼粉还能被用作植物肥料。
此外,钼对人体还具有很多的健康益处。
→预防和治疗癌症
摄取的钼,有助于预防癌症;根据多项流行病学研究,生活在缺钼土壤上的人群,患食道癌和直肠癌的病例较多。
尽管研究仍处于起步阶段,但补充钼可能是治疗某些AI症有希望的方法。
在一项针对患有胃癌和食道癌的大鼠的研究中,与对照组相比,钼补充剂减少了肿瘤的数量。
→排毒
钼能够将乙醛分解成乙酸,乙醛是念珠菌的废物,念珠菌是一种,会破坏体内平衡的酵母菌。
乙醛也是饮酒的产物,而乙醛不能排出体外,会毒害它积聚的组织;但乙酸很容易被人体排泄,通过这种方式,钼可以帮助身体有害毒素。
→预防常见疾病
钼可降低体内铜的含量,可有效预防和治疗纤维化、炎症和自身免疫性疾病。
研究表明,四硫代钼酸盐形式的钼,可以显著阻止肺和肝纤维化的发展。
四硫代钼酸盐还被明,有助于对乙酰氨基酚(泰诺中的活性成分),引起的肝损伤,并减少抗生素物阿霉素引起的心脏损伤。
此外,钼还通过降低血糖水平的高峰值,来帮助预防糖尿病。
→帮助消除亚硫酸盐
亚硫酸盐是含有硫的食品防腐剂,它们被用作食品和饮料的抗褐变剂,如瓶装果汁、啤酒、葡萄酒、干果、肉类和酸菜。
食用这些亚硫酸盐含量高的产品,会导致它们在体内积聚,并引发一种称为“亚硫酸盐敏感性”的疾病,包括恶心、胃痉挛、腹泻、喘息、刺痛感和荨麻疹等症状。
有些人对亚硫酸盐过敏,在这种情况下,亚硫酸盐反应甚至可能是致命的。
此外,在一些哮喘患者中,食物中的亚硫酸盐会引发哮喘发作,有研究表明,补充钼(Mo)有助于减少亚硫酸盐敏感性的,哮喘患者的哮喘发作。
通过一种称为氧化亚硫酸盐的酶,钼有助于将亚硫酸盐转化为硫酸盐,从而使这些食品添加剂离开身体,而不是积累并引起毒性。
通过去除体内亚硫酸盐的积累,钼不仅可以降低对亚硫酸盐的敏感性,还有助于改善肝脏的健康,从而提高身体的排毒能力。
→平衡尿酸水平
尿酸是在血液中发现,并通过尿液排出的代谢废物,钼(Mo)缺乏会导致低尿酸水平,这与智力下降、神经系统问题和晶状体脱位有关。
低尿酸水平也与阿尔茨海默病、亨廷顿病、帕金森病和多发性硬化症等疾病有关。
血液中需要一定量的尿酸,才能健康运作,如果没有的钼(Mo),来平衡尿酸水平,尿酸不足会对你的健康构成威胁。
→改善血液循环
钼还可以帮助体内一氧化氮(NO)的产生,来改善血液循环。
一氧化氮是扩张血管、调节细胞生长和保护血管免受损伤所的,这些因素有助于增加整个身体的血液流动。
血液循环好了,输送到全身细胞的氧气和营养物质的增加,这反过来又会产生的器官功能、认知能力和整体健康。
→改善牙齿健康
钼可以增强牙齿的保护釉质,有助于蛀牙,较高的钼摄入量,与较低的蛀牙率有关。
在一项研究中,研究人员用钼和氟化物,处理了牛牙的珐琅质,结果表明,钼通过提高矿物质修复率,来帮助治愈蛀牙。
因此,在饮食中或通过补充剂,获得的钼(Mo),有助于保持牙齿健康。
其实,很少有人缺乏钼(Mo)。
一般缺乏钼都是遗传的,如患有遗传性严重代谢缺陷,称为钼辅因子缺乏症,但在健康人群中从未发现过。
这种罕见的疾病,导致三种钼酶——亚硫酸盐氧化酶,黄嘌呤脱氢酶,和醛氧化酶的缺乏。
出生时患有这种辅因子缺乏症的婴儿,如果存活下来,可能会有严重的神经系统异常,和各种其他异常。
如果确实发生缺乏症,则可能是获得性缺乏症,在20世纪80年代,有一位克罗恩病患者出现了钼缺乏症,这是因为他长期静脉注射营养,而没有增加钼的水平。
钼缺乏症状包括:心脏和呼吸频率加快,头痛和夜盲症。当停止静脉营养,并用钼酸铵形式的钼补充剂后,患者有所改善。
因为钼是一种微量元素,人体只需要少量,太多反而会有不好的影响。
饮食中高水平钼,如每天10至15mg,和工业暴露于这种微量矿物质,会导致痛风,补充剂也可能加剧已经存在的痛风。
钼补充剂也可能引起铜缺乏症,因为钼会减少身体组织中的铜。
铜缺乏的症状有:疲乏、贫血、白细胞减少,有时可发生骨质疏松或神经损伤。
神经损伤能引起手脚刺痛和感觉丧失,可能感觉肌肉无力;一些人出现意识障碍、易怒、轻度抑郁,协调功能受损。
一般来说,成年人每天不应服用超过2mg,按年龄组划分,钼的可耐受上限摄入量如下:
0-12个月的婴儿:无法确定,但摄入的来源应仅来自食物和配方奶粉;
1-3岁儿童:每天300μg;
4-8岁儿童:每天600μg;
9-13岁儿童:每天1,100μg(每天1.1mg);
14-18岁青少年:每天1,700μg(每天1.7mg);
19岁及以上的成年人:每天2,000μg(每天2.0mg);
对于大多数人来说,钼补充剂不是的,因为仅通过饮食,获得充足的量并不难。
→钼(Mo)含量高的食物包括:
豆类,如豌豆和小扁豆;
坚果,如杏仁、腰果;
乳制品,尤其是奶酪和酸奶;
叶菜类蔬菜;
蛋;
动物肝脏;
番茄;
如果由于某种原因,你要选择补充剂,那么一定要注意剂量;如果你有胆结石或肾脏问题,就不应该服用钼补充剂。
就可能的物相互作用而言,目前已经发现,高剂量钼抑制大鼠对乙酰氨基酚的代谢,因此不推荐将对乙酰氨基酚与钼一起服用。
饮食性铜缺乏,或铜代谢功能障碍导致缺铜的人,发生钼毒性的风险可能增加。
如果你正处于妊娠期或哺乳期,有健康问题,或目前正在服用物,请在服用新的补充剂之前,咨询的医疗卫生人员。
今天,我们又学会了一个新字,哦不,是新物质(钼)。
别小看体内的各种微量元素,尽管它们在体内的含量很少,但是却发挥着的作用,可谓“四两拨千斤”。
钼在人体内充当着重要的酶辅助因子,控制着过程,平衡尿酸水平,改善血液循环和牙齿健康。
不过,幸好钼缺乏的问题比较罕见,但也要留意你的膳食安排是否合理,平时有没有吃富含钼的食物。
如果处于某种原因,不能从饮食中补充所需的钼,想要服用钼补充剂,那么一定要注意剂量问题,在人士的指导下进行哦。
安徽专业回收废钼厂商地址
2月25日,胡润研究院发布《2024胡润中国500强》,列出了中国500强非国有企业,按照企业价值进行排名。据Mysteel统计,共有11家有企业上榜,其中,洛阳业等5家企业估值超千亿元。
【市热点】
1月22日,洛阳业发布业绩预告,预计2024年归母净利润在128亿到142亿元之间,比2023年增加45.50亿到59.50亿元,同比增长55.15%到72.12%。
2024年,公司铜、钴、铌等主要产品产量均创历史新高。得益于刚果(金)TFM和KFM两座世界级铜矿山、总计6条生产线的全力生产,公司产铜65万吨,同比增长55%。与此同时,铜价2024年整体在高位徘徊,LME期铜一度在去年5月创出11,104.5美元/吨的历史新高。作为铜的副产品,钴产量为11.4万吨,同比增长106%。铜钴产销量同比大幅增长,叠加铜产品同比上升、降本增效等措施,
驱动2024年洛阳业经营业绩再创历史新高。
1月6日晚间,洛阳业发布2024年度主要产品产量情况的公告,2024年公司钴产量114165吨,同比增长106%。
洛阳业发布关于2024年度主要产品产量情况的公告。根据初步核算,2024年公司铜产量为65万吨,同比增长55%;钴产量为11万吨,同比增长106%;产量为2万吨,同比下降2%;钨产量为8288吨,同比增长4%;铌产量为1万吨,同比增长5%;磷肥产量为118万吨,同比增长1%。
12月27日佛山市丰汇:
316 干净炉料 17000,
304无胶边料 9650,
304新胶边料 9400,
304# 工业料 9350,
304# 混搭料 9200,
304干净统料 9100,
304黑金刚网 5000,
301 电子边料 7200,
201无胶新料 4650,
201新旧管料 4550,
201新胶边料 4350,
201混搭料包4250,
201干净统包4100,
不锈铁统料包2700,
各种高镍高高铬钢。
洛阳业11月28日在投资者互动平台表示,公司积布的资产及世界级资源,重视投资价值和股东获得感 。公司目前是领先的铜、钴、、钨、铌生产商和巴西领先的磷肥生产商,同时公司基本贸易业务居前列。我们提出了未来五年的发展目标,初步进入一流矿业公司行列,实现年产铜从60万吨提升至80-100万吨。同时公司也将不断提升运营质量,加强公司治理,着力降本增效,进一步增强竞争优势。
【市热点】韩国对越南冷轧不锈钢征收3.66-11.37%反倾销税。10月23日综合消息,韩国贸易委员会(KTC)决定对来自越南的冷轧不锈钢产品征收初步反倾销(AD)税,税率从3.66%到11.37%不等,具体取决于公司。
具体来说,甬金科技(越南)的反倾销税率为3.66%,TVL股份公司和TVL钢铁生产建设股份公司的反倾销税率为11.37%,其他供应商的反倾销税率为4.79%。
涉案产品为不锈钢冷轧产品,包括钢种、形状、宽度、长度和厚度,不论表面处理和切边。
损害调查期为2021年1月1日至2023年12月31日,倾销调查期为2023年1月1日至2023年12月31日。
此次反倾销调查是在今年5月根据浦项钢铁公司的申请启动的。
中恒戴南基地废不锈钢采购:
304, 新料10300,
316L,新料19000,
2205,新料18800,
2507,新料23500,
410,新料3700,
430,新料4200,
436,新料7000,
443,新料4800,
201,新料5000,
304L,新料10500,
2304,新料8200,
17-4,新料8600,
347, 新料11500,
309s,新料15200,
317L,新料21000,
310,新料25500,
904L,新料42000,
c276,新料130000,
高镍高高铬材质电议,秒付款,不欠帐,
10月10日,Northisle Copper and Gold为其位于不列颠哥伦比亚省哈迪港附近的100%控股项目提供了的资源估算,以支持新的初步经济评估(PEA),该评估预计将于2025年季度初发布。North Island项目资源目前总计9.06亿吨,指示资源铜品位为0.16%,金品位为0.24克/吨和品位为75 ppm,总含量为63亿磅铜当量;另外还有2.14亿吨推断资源,铜品位为0.12%、金品位为0.22克/吨和品位为52 ppm,总含量为13亿磅铜当量。
钼为人体及动植物的微量元素。
为银白金属,硬而坚韧。
人体各种组织都含钼,体内总量为9mg,肝、肾中含量高。
目录1基本资料2基本介绍2.1 发现2.2 视力2.3 危害3主要成分4产地分布5开发利用5.1 用途5.2 用5.3 使用5.4 钼合金6危害6.1 钼缺乏症6.2 钼过量6.3 钼污染6.4 对环境影响7代表地方7.1 钼业之都7.2 金寨钼矿7.3 温泉钼矿1基本资料拼音:[mù]部首:钅笔画:10五笔86:QHG五笔98:QHG仓颉:OPBU郑码:PLVV笔顺:撇横横横竖提竖横折钩横横横四角号码:86700Unicode:CJK统一汉字:U+94BC 基本字义:钼(钼)mù一种金属元素。
可用来生产特种钢,是电子工业的重要材料。
元素名称:钼(mù)CAS号:7439-98-7[1]安瓿中的钼杆元素符号:Mo钼元素英文名称:Molybdenum元素类型:金属元素原子体积:(立方厘米/摩尔) 9.4元素在太阳中的含量:(ppm) 0.009元素在海水中的含量:(ppm) 0.01地壳中含量:(ppm) 1.5相对原子质量:96原子序数:42质子数:42中子数:54所属周期:5所属族数:ⅥB电子层排布:2-8-18-13-1电子层:K-L-M-N-O外围电子层排布:4d5 5s1氧化态:Main Mo+6 ,Other Mo-2,Mo0,Mo+1,Mo+2,Mo+3,Mo+4,Mo+5 电离能(kJ /mol)M - M+ 685M+ - M2+ 1558M2+ - M3+ 2621M3+ - M4+ 4480M4+ - M5+ 5900M5+ - M6+ 6560M6+ - M7+ 12230M7+ - M8+ 14800M8+ - M9+ 16800M9+ - M10+ 19700晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。
晶胞参数:a = 314.7 pmb = 314.7 pmc = 314.7 pmα = 90°β = 90°γ = 90°莫氏硬度:5.5声音在其中的传播速率:5400m/s2基本介绍密度10.2克/立方厘米。
熔点2610℃。
沸点5560℃。
化合价+2、+4和+6,稳定价为+6。
钼是一种过渡钼精粉元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。
在氧化的形式下,钼很可能是处于+6价状态。
虽然在电子转移期间它也很可能首先还原为+5价状态。
但是在还原后的酶中也曾发现过钼的其他氧化状态。
钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。
发现1782年,瑞典的埃尔姆,用亚麻子油调过的木炭和钼酸混合物密闭灼烧,而得到钼。
1953年确知钼为人体及动植物的微量元素。
主要矿物是辉钼矿(MoS2)。
天然辉钼矿MoS2是一种软的黑矿物,外型和石墨相似。
18世纪末以前,欧洲市场上两者都以“molybdenite”名称出售。
1779年,舍勒指出石墨与molybdenite(辉钼矿)是两种不同的物质。
他发现硝酸对石墨没有影响,而与辉钼矿反应,获得一种白垩状的白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。
他认为这种白粉末是一种金属氧化物,用木炭混合后强热,没有获得金属,但与硫共热后却得到原来的辉钼矿。
1782年,瑞典一家矿场主埃尔摩从辉钼矿中分离出金属,命名为molybdenum,元素符号定为Mo。
我们译成钼。
它得到贝齐里乌斯等人的承认。
钼-99是钼的放射性同位素之一,他在医院里用于制备锝-99。
锝-99是一种放射性同位素,病人服用后可用于内脏器官造影。
用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中,当钼-99衰变时生成锝-99,在需要时可把锝-99从容器中取出发给病人。
钼是钢与合金中的重要元素,常用的含钼炉料有金属钼、钼铁,有时还可以使用氧化钼精矿来直接还原冶炼含钼钢种。
钼在地壳中的自然储量为1900万吨,可开采储量860万吨。
[1] 视力钼是组成眼睛虹膜的重要成分,虹膜可调节瞳孔大小,视物清楚,钼不足时,影响胰岛素调节功能,造成眼球晶状体房水渗透压上升,屈光度增加而导致近视。
大豆、扁豆、萝卜缨中含钼较高,此外还有糙米、牛肉、蘑菇、葡萄和蔬菜等。
[2]危害钼对人体生命健康危害大,它能够使体内能量代谢过程出现障碍,心肌缺氧而灶性坏死,易发肾结石和尿道结石,增大缺铁性贫血患病几率,引发龋齿,钼是食管癌的罪魁祸首,它还会导致痛风样综合征,关节痛及畸形、肾脏受损,生长发育迟缓、体重下降、毛发脱落、动脉硬化、结缔组织变性及皮肤病等生命健康隐患。
[3] 3主要成分 钼的性质钼位于门捷列夫周期表第五周期、第六副族,为一过渡性元素,钼原子序数42,原子量95.94,原子中电子排布为:ls2s2p3s3p3d4s4p4d5s 。
由于价电子层轨道呈半充满状态,钼介于亲石元素(8电子离子构型)和亲铜元素(18电子离子构型)之间,表现典型过渡状态.V . W.戈尔德斯密特在元素的地球化学分类里将它称亲铁元素。
[4]自然界里,钼有七个稳定的天然同位素,它们的核子数及其在天然混合物中所占比例如表1所列。
表1 钼的同位素及分配 同位数名称92Mo 94Mo95Mo96Mo97Mo98Mo100Mo∑各占比例(%)原子量15.8491.9063 9.0493.9047 15.7294.90584 16.5395.9046 9.4696.9058 23.7897.9055 9.6399.9076 100.0095.94 另据文献记载,已发现第八种天然同位素的存在。
此外,还发现钼有十一种人造放射性同位素,因资料数据不详,此不赘述。
钼为银白金属,钼原子半径为0.14nm 原子体积为235.5px/mol ,配位数为8,晶体为Az 型体心立方晶系,空间群为Oh (lm3m ),至今还没发现它有异构转变.常温下钼的晶格参数在0.31467~0.31475nm 之间,随杂质含量而变化。
钼熔点很高,在自然界单质中名列第六,被称作难熔金属,见表2(摘自《理化手册; 60th ) 钼的密度为10.23g/cm ,约为钨的一半(钨密度19.36g/cm )。
钼的热膨胀系数很低20~100℃时为4.9×10/℃;钼的热传导率较高,为142.35w/(m·k) 钼电阻率较低:0℃时为5.17×10Ω·cm ;800℃时为24.6×10Ω·cm ;2400℃时为72×10Ω·cm 。
钼属顺磁体,99.99%纯度的钼在25℃时比磁化系数为0.93×10cm/g 。
钼的比热在25℃时为242. 8J/(kg·k )。
钼的硬度较大,摩氏硬度为5~5.5。
钼在沸点的蒸发热为594kJ/mol ;熔化热为27.6 ±2.9kJ/mol ;在25℃时的升华热为659kJ/mol 。
表2 难熔物及熔、沸点 物质碳(C )钨(W )铼(Re ) 锇(Os )钽(Ta )钼(Mo )熔点(℃)沸点(℃) 3650~36974827 3410±105660 31805627 30455027±100 29965425±100 2622±105560钼的原子半径、离子半径与钨、铼的很接近。
原子半径(nm ) 4离子半径(nm ) 6离子半径(nm ) 钼钨铼0.1390.1400.1380.0680.0680.0650.065钼原子的电子排列体现了典型过渡元素的性质:次外层的五个4d 规道、外层的一个5s 规道上电子均呈半弃满状态。
这决定了钼的化学性质比较稳定。
常温或在不太高的温度下,钼在空气或水里是稳定的。
钼在空气中加热,颜开始由白()转暗灰;温升至520℃,钼开始被缓慢氧化,生成黄三氧化钼(MoO3温度降至常温后变为白);温升至600℃以上,钼迅速被氧化成MoO3。
钼在水节气中加热至700~800℃便开始生成MoO2,将它进一步加热,二氧化钼被继续氧化成三氧化钼。
钼在纯氧中可自燃,生成三氧化钼。
钼的氧化物已见于报道的很多,但不少是反应中间产物,而不是热力学稳定相态。
的只有九种,其结构与转化温度如表3。
表3 钼的氧化物氧化物生成温度范围(℃)结晶结构MoO2 菱形Mo4O11 <615 单斜系Mo4O11 615~800 正斜形Mo17O47 560Mo5O14 530Mo8O23 650~780Mo18O52 600~750 三斜系Mo9O26 750~780 单斜系MoO3 菱形另外,在生成MoO2前还有三种中间产物Mo2O3, moO和Mo3O,但都还未能制造出它们的纯产物。
钼的这一系列载化物中,除高价态的MoO3为酸酐外,其余氧化物均为碱性氧化物。
钼重要的氧化物是MoO3和MoO2。
MoO2分子量为127.94,含Mo74.99%。
纯MoO2呈暗灰、深褐粉末状。
25℃时,MoO2的生成热为550kJ/mol,密度为6.34~6.47g/cm。
MoO2呈金红石单斜结晶构造,单位晶体(晶胞)由两个MoO2分子组成,晶格参数为a= 0.5608nm, b= 0.4842nm,c=0.5517nm,d=11.975nm。
MoO2可溶于水,易溶于盐酸及硝酸,但不溶于氨水等碱液里。
在空气、水蒸气或氧气中继续加热MoO2,它将被进一步氧化,直至生成MoO3。
在真空中加热到1520~1720℃固态MoO2部升华而不分解出氧,但大部分MoO2分解成MoO3气体和固态Mo。
Jette. E. R(1935年)报道:MoO2在1980℃±50℃、0.1MPa(惰性气体)的条件下分解成钼和氧。
MoO2是钼氧化的产物。
moO3为淡绿或淡青的白粉末。
分子量为143.94,含Mo 66.65%。
25℃时,MoO3的生成热为668kJ/mol,密度为4. 692g/cm,熔点为795℃,沸点为1155℃.在低于熔点的温度已开始升华.在520~720℃时,升华呈气体的三氧化相为MoxO3x分子混合物,其中x=3~5,以x=3为主。
MoO3微溶于水而生成钼酸。
18℃,MoO3溶解度为1.066%,70℃时为 2.05%。
溶于水的三氧化钼与水按不同比例组成一系列同多酸,nMoO3·mH2O,其中n≥m。
钼(Molybdenum,Mo)是一种过渡金属元素,为人体及动植物的微量元素。钼单质为银白金属,硬而坚韧。钼在钢铁工业中的应用居首要,占钼总消耗量的八成,化工领域约占一成,医和农业等领域约占一成。
钼主要用于生产合金钢,在钢铁领域的消费量大。例如,含钼量为4%-5%的不锈钢往往用于诸如、化工设备等侵蚀、腐蚀比较严重的地方。钼合金是一种熔点高、抗磨损和抗腐蚀性能良好的难熔金属,在石油、国防和航空航天等领域有着广泛的应用。
钼的化合物是高性能催化剂,被广泛应用到化学、石油、塑料、纺织等行业。例如,在煤油共炼过程中,铁基催化剂的加氢性能较差,大幅度提高重油转化率。而钼基催化剂在加氢过程中可以有效促进沥青等大分子的加氢转化,被视作优秀的加氢催化剂。纳米碳化钼材料具有熔点高、稳定性好、导电导热性优良的特点,在催化加氢脱氧、电催化析氢、甲烷间接转化、水汽变换和逆水汽变换中应用。钼的催化活性高、性能稳定、廉价易得,具有很好的发展前景。
钼是人体所需微量元素钼是人体的微量元素之一,也是多种酶的组成部分,在机体的主要功能是参与硫、铁、铜之间的相互反应。不仅如此,近年来,以二硫化钼(MoS2)为代表的二维过渡金属硫化物在生物医学领域得到了广泛的应用, 在疾病光热疗法、化学疗法、基因疗法等单一治疗策略及多种方法联合治疗中。
钼是植物生长不可缺少的元素,不仅能促进植物对磷的吸收,还能加速植物体内醇类的形成与转化,提高植物叶绿素和维生素丙的含量,提高植物的抗旱、抗寒以及抗病能力。目前,在花生、茄子和大蒜增产中。在畜牧业,钼的生物学作用主要是依靠作为动物体内某些含钼酶类的组成成分,间接影响酶的生物学活性。