江西本地废钼回收企业排名
钼是一种金属元素,元素符号:Mo,英文名称:Molybdenum,原子序数42,是VIB族金属。钼的密度为10.2g/cm³,熔点为2610℃,沸点为5560℃。钼是一种银白的金属,硬而坚韧,熔点高,热传导率也比较高,常温下不与空气发生氧化反应。作为一种过渡元素,易改变其氧化状态,钼离子的颜也会随着氧化状态的改变而改变。钼是人体及动植物所的微量元素,对人以及动植物的生长、发育、遗传起着重要作用。钼在地壳中的平均含量为0.00011%,钼资源储量约为1100万吨,探明储量约为1940万吨。由于钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,被广泛应用于钢铁、石油、化工、电气和电子技术、医和农业等领域。
虽然钼是在18世纪后期被人们发现的,但在钼被发现之前,就已经被人们使用,如14世纪,日本使用含钼的钢制造马刀。16世纪,辉钼矿因为与铅、方铅矿及石墨的外观和性质都很相似,被人们当作石墨使用,当时的欧洲人还将这几种矿石统称为“molybdenite”。
1754年,瑞典化学家BengtAnderssonQvist检测了辉钼矿,发现里面不含铅,因而他认为辉钼矿与方铅矿并不是同一种物质。
1778年,瑞典的化学家舍勒发现硝酸与石墨不起反应,而与辉钼矿反应后获得一种白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。他认为这种白粉末是一种金属氧化物,用木炭混合后强热,并没有获得金属,而当它与硫在一起加热后却得到原来的辉钼矿,因而他认为辉钼矿应该是一种未知元素的矿物。
根据舍勒的启发,1781年,瑞典人耶尔姆用“碳还原法”从这种白粉末中分离出一种新的金属,并将该金属命名为“Molybdenum”。
合金领域
钼在钢铁领域的消费量大,主要用于生产合金钢(约占钼在钢铁消耗总量中的43%)、不锈钢(约23%)、工具钢和高速钢(约8%)、铸铁和轧辊(约6%)。钼大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分则先熔炼成钼铁,然后再用于炼钢。钼作为钢的合金元素具有以下优点:提高钢的强度和韧性;提高钢在酸碱溶液和液态金属中的抗腐蚀性;提高钢的耐磨性;改善钢的淬透性、焊接性和耐热性。例如,含钼量为4%-5%的不锈钢往往用于诸如海洋设备、化工设备等侵蚀、腐蚀比较严重的地方。
以钼为基体加入其他元素(如钛、锆、铪、钨及稀土元素等)构成有合金,这些合金元素不仅对钼合金起到固溶强化和保持低温塑性的作用,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼基合金因为具有良好的强度、机械稳定性、高延展性而被用于高发热元件、挤压磨具、玻璃熔化炉电、喷射涂层、金属加工工具、航天器的零部件等。
钼,是元素周期表上序号为42的一种过渡金属元素,它的化学符号是Mo。钼金属呈银白,硬而坚韧。它在常温下不受空气的侵蚀,跟盐酸或氢氟酸不起反应。
千呼万唤始出来
自然界中,钼主要以矿物辉钼矿(MoS2)形式存在。天然辉钼矿是一种软的黑矿物,尽管辉钼矿在古代就得到了应用,但辉钼矿和铅、方铅矿及石墨都很相似,不易区分。“molybdos”这个词在希腊文里就是铅的意思。18世纪末以前,欧洲市场上两者都以molybadenite(铅的古希腊名)名义出售。
1779年,舍勒(瑞典化学家,氧气的发现人之一)指出,铅或石墨与molybadenite是两种不同的物质。他发现,硝酸对石墨没有影响,而与molybadenite反应,获得一种白粉末;将它与碱溶液共同煮沸,结晶后析出一种盐。他认为,这种白粉末是一种金属氧化物(实际上是氧化钼);它与木炭混合经高温加热后没有获得金属,但与硫共热后得到原来的molybadenite。
1782年,舍勒的好友、瑞典矿场主埃尔摩(又译作耶尔姆)用亚麻籽油调过的木炭和钼酸混合物密闭灼烧,从molybadenite中分离出金属,命名为molybdenum,元素符号定为Mo。中国将其译成“钼”。它得到了曾发现铈、硒、硅、钽、钍等元素的瑞典化学家贝齐里乌斯的承认。
钼金属在空气中灼烧,会放出金黄光芒;不同氧化态的钼离子有不同的颜。直到钼被发现100多年后的1893年,M.莫思森才在电炉里熔炼炭和三氧化钼的混合物,首次获得含钼92%~96%的铸态金属。
貌不惊人用途广
钼的发现虽然已有200多年历史,但大规模开发利用还是本世纪尤其近几十年的事。
钼及钼合金的用途十分广泛,这是因为它有许多特性,如强度高,热膨胀系数低,优良的导热与导电性能,对熔融玻璃、熔盐及熔融金属有较高的防腐性,还可提高薄涂料的耐磨性。
合金钢、不锈钢、工具钢及铸铁是钼的主要应用领域,其生产量决定着钼的需求。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天领域的各种高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。纯钼丝用于高温电炉和电火花加工以及线切割加工。钼片用来制造无线电器材和X射线器材。钼在其他合金领域及化工领域的应用也不断扩大。合金钢中加钼,可以提高材料弹性限、抗腐蚀性能以及保持永久磁性等。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。
二硫化钼是一种重要的润滑剂,用于航天和机械工业领域。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的化学催化剂。
钼金属还逐步应用于核电、新能源等领域。
钼也是植物所的微量元素之一,没有它,植物就无法生存。钼在农业上可用作微量元素化肥。
人体各种组织都含钼,体内铜的总量为9毫克,以肝、肾中含量高。钼-99是钼的放射性同位素之一,在医院里用于制备锝-99。锝-99是一种放射性同位素,病人服用后可用于内脏器官造影。用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中,当钼-99衰变时生成锝-99。
沙场硬汉显身手
人们曾在14世纪的一把日本武士剑中发现含有钼,这是钼早发现被应用于军事用途。1891年,法国斯奈德公司率先把钼作为合金元素生产了含钼装甲板。他们发现,钼的密度仅是钨的一半。这样一来,在许多钢铁合金应用领域,钼有效取代了钨。次世界大战的爆发,导致了钨需求量的剧增和钨铁供应的度紧张,钼由此在许多高硬度和耐冲击钢中取代了钨。钼需求的增长促使了人们对钼的深入研究。当时,美国科罗拉多州的大型矿山克莱麦克斯矿随之开发,并于1918年投产。
因为钼的重要性,各国政府视其为战略性金属。由于其耐高温烧蚀,钼在20世纪初被大量应用于制造装备,主要用于火炮内膛、火箭喷口的制造。现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。
钼合金是以钼为基体加入其他元素而构成的有合金,主要合金元素有钛、锆、铪、钨及稀土元素。钼合金有良好的导热、导电性和较低的膨胀系数,在高温下(1100~1650℃)有较高强度,比钨容易加工,可用作电子管的栅和阳、电光源的支撑材料以及用于制作压铸和挤压模具、航天器的零部件等。
次世界大战的结束导致了钼需求锐减。要解决这个问题,就得开发新的应用领域。不久,新型低钼合金钢在汽车工业生产中得到了。从此,钼作为合金元素在钢铁和其他领域的开发研究进入了一个新的阶段。
20世纪30年代末,钼已经是被广泛使用的工业原料。“二战”战后重建,再一次刺激了人们对钼在工业领域应用的开发与研究,给许多含钼工具钢的应用开辟了广阔的市场。如今,合金钢、不锈钢、工具钢及铸铁依然是钼的主要应用领域。
资源待研发
钼在地壳中主要存在于花岗岩类岩石中,钼矿石比较单一,主要是硫化矿石。
由于钼在军工方面的用途,世界强国纷纷把钼列为需要实行战略储备的矿产资源。战略矿产储备或矿产品战略储备,主要是针对那些对国家有战略意义、国内又相对稀缺的矿种所建立的储备。目前,世界上有10个国家建立有战略矿产储备制度。
我国是钼矿资源国家,总储量达860万吨(以钼量计),其中,工业储量约350万吨,居世界第二位。我国钼矿资源具有储量大、分布广、大型矿床多、矿体埋藏浅等特点,对的钼市场有重要影响。
美国是世界第二大钼资源国。智利、加拿大、俄罗斯和亚美尼亚也是钼资源较为的国家。
废钼回收的技术流程与关键环节
废钼回收的技术流程通常包括预处理、化学提纯和熔炼三个核心环节。预处理阶段通过磁选、破碎和筛分去除杂质;化学提纯采用酸浸或碱浸法溶解钼化合物,再通过沉淀或电解获得纯钼粉;最后经高温熔炼制成钼锭或钼合金。其中,催化剂废料的回收技术要求较高,需采用焙烧-氨浸工艺提取钼酸铵。技术难点在于杂质控制(如镍、铁)和回收率提升,部分企业已引入自动化分选系统和绿色浸出技术以优化效率。
1900年初,一个名叫Greenleaf whittier pickard的人制作了世界上台矿石收音机,随后RAC(美国无线电公司)进行工业化生产,至今已超过100年。(以上文字摘自网络)时至今日虽然无线电技术已飞速发展,却仍有许多人对矿石机“情有独钟”。现介绍几种可以检波的矿石,同一名称的矿石由于产地不同,形成的条件不同,所含其它物质种类和比例不同,也就造成了形状、颜及电性能等大差异。本帖仅供参考。
一、中自然铜:虽然在中医里称做自然铜,也叫方块铜或石髓铅,实际上是天然硫化铁矿石。外观多为规则的方块形,大小不一表面平坦,亮黄具金属光泽;有时表面呈棕褐,质坚硬但易砸碎。使用效果:检波点较少,灵敏度一般,稳定性一般。
二、方铅矿石:方铅矿是一种灰的硫化铅,晶体呈立方体,有时为八面体和立方体的聚形。强金属光泽,具弱导电性和良检波性。五、六十年代销售的活动矿石和固定矿石多为方铅矿石。使用效果:检波点较多,灵敏度较高,稳定性较好。
三、黄铁矿石:因其浅黄铜和明亮的金属光泽常被人误为黄金,故又称为“愚人金”。黄铁矿分布广泛,一般呈立方体、八面体、五角十二面体及其聚形。硬度较高小刀刻不动。使用效果:检波点一般,灵敏度一般,稳定性一般。
四、黄铜矿石:是一种铜铁硫化物矿物,常含微量金、银等。正方晶系,晶体相对少见,多呈不规则粒状及致密块状结合体,也有肾状、葡萄状集合体。黄铜黄,硬度低于黄铁矿,是一种较常见的矿石。使用效果:检波点少,灵敏度一般,稳定性一般。
五、辉钼矿石:是钼的硫化矿物。分别属于三方和六方晶系,呈铅灰、强金属光泽,通常多以片状、鳞片状或细小颗粒状产出。辉钼矿比指甲还软,摩氏硬度为1-1.5。使用效果:检波点较多,灵敏度高,稳定性较好。
六、红锌矿石:橙黄,带暗红光,六方晶系,成致密块状体。相应有锰-红锌矿、铅-红锌矿和铁-红锌矿。自然界不常见。使用效果:检波点多,灵敏度很高,稳定性较高。
七、钛铁矿石:是铁和钛的氧化矿物,是提炼钛的主要矿石。三方晶系,晶体一般为板状,晶体集合到一起为块状或粒状。灰到黑,有一点金属光泽。使用效果:检波点很少,灵敏度很低。稳定性一般。
八、镜铁矿石:赤铁矿变种,与石英伴生。复三方偏三角面体晶类,块状、鳞片状。红棕、钢灰、铁黑。使用效果:检波点少,灵敏度一般,稳定性一般。
九、软锰矿石:主要成份为二氧化锰,颜由浅灰到黑,具有金属光泽。软锰矿软,用手摸会像煤一样弄黑你的手。一般为块状、肾状或土状,有时具有放射纤维状形态。使用效果:检波点少,灵敏度低,稳定性差。
十、锡石矿石:是常见的锡矿物,硬度高,比重大。复四方双锥晶系,常呈双锥状、双锥柱状。颜由无至黑,透明至不透明。富铁锡石可具电磁性。使用效果:检波点不多,灵敏度高,稳定性好。
十一、斑铜矿石:是一种铜铁的硫化物矿物。多呈致密块状集合体。新鲜断面呈古铜,表面易氧化呈蓝紫斑状的锖。在地表易风化成孔雀石和蓝铜矿。使用效果:检波点少,灵敏度低,稳定性差。
十二、磁铁矿石:氧化物类铁矿石,属等轴晶系。晶体呈八面体和菱形十二面体,集合体呈粒状或块状。半金属光泽,颜铁黑。使用效果:检波点少,灵敏度很低,稳定性一般。
十三、金属硅:旧称“矽”,又称结晶硅或工业硅,其主要用途是做为非铁基合金的添加剂。使用效果:检波点多,灵敏度高,稳定性好。
几种在资料中介绍有检波功能的矿石,而本人在测试中无法检波。也许您手中有同样名称的矿石却可以使用,这并不奇怪。
一、金红石:金红石就是较纯的二氧化钛,在地壳中储量较少。四方晶系,常具完好的四方柱状或针状晶形。颜暗红、褐红,黄或桔黄,富铁者呈黑。透明至不透明。性脆。使用效果:缘体,不能检波。
二、褐铁矿:褐铁矿呈多种调的褐,一般为钟乳壮、葡萄状,致密的或梳松的块状甚至土状。也有像黄铁矿那样的晶体形状(称为假像)。使用效果:缘体,不能检波。
三、闪锌矿:锌的硫化物矿物。纯闪锌矿近似于无、通常因含其它物质而呈浅黄、红褐、棕甚至黑。透明至不透明,晶体形态呈四面体或菱形十二面体,通常成粒状集合体产出。使用效果:缘体,不能检波。
四、菱铁矿:菱铁矿一般为晶体颗粒状或致密块状、球状或凝胶状。颜一般为黄白或灰白,风化后变成褐或褐黑。使用效果:正反向电阻很小,不能检波。
五、辉锑矿:辉锑矿是锑的硫化物,属正交斜方晶系,晶体常见呈尖顶的长柱型。铅灰、金属光泽不透明。使用效果:缘体,不能检波。
六、钼铅矿:钼铅矿是一种铅钼酸盐矿物,具有松脂光泽或金刚光泽,颜为黄到橙红或褐。四方晶系四方双锥晶类,板状、薄板状晶体,少数锥状、柱状,单形常见,集合体粒状。使用效果:缘体,不能检波。
七、铬铁矿:铬铁矿是铬和铁的氧化物矿物,相当坚硬,黑半金属光泽。使用效果:缘体,不能检波。
八、白铅矿:白铅矿是方铅矿遇到含碳酸盐的水后发生化学反应而形成的。像这样一种矿经化学作用成为另一种矿,称为次生矿物。晶体为透明至半透明。以白、无为主,亦有灰、黄、红棕或蓝绿。使用效果:缘体,不能检波。
九、毒砂:铁、砷的硫化物,又称砷黄铁矿。中国从毒砂(旧称白砒石)中制取砒霜,历史悠久。单斜或三斜晶系,晶体呈柱状,集合体成粒状或致密块状。锡白至钢灰,金属光译。敲击时发出蒜臭味。使用效果:良导体,不能检波。
十、锑:银白有光泽硬而脆的金属。有磷片状晶体结构。使用效果:良导体,不能检波。
十一、铋:铋在自然界以游离金属和矿物的形式存在。矿物有硫化物辉铋矿、氧化物铋华等。铋为银白至粉红金属,质脆易粉碎。在2003年,发现了铋有其微量放射性。使用效果:良导体,不能检波。
十一、自然铜:铜红,表面常出现棕黑氧化被膜。密度大延伸性强,常与赤铁轨、孔雀石、蓝铜矿伴生。使用效果:良导体,不能检波。
钼是一种银灰金属,具有的高温力学性能, 且膨胀系数低, 导电、导热系数高;
熔点为2623°C;
密度为10.2g/cm3;
真空环境或惰性气体保护环境,纯钼较高耐高温1200度,钼合金较高耐高温1700度;
钼的弱氧化从 300 °C (572 °F) 开始,它是商用金属中热膨胀系数的金属之一。
制备工艺
1、钼粉纯度大于等于99.95%。采用热压烧结工艺对钼粉末进行致密化处理,将钼粉末置于模具中;将模具放入热压烧结炉中后,将热压烧结炉抽真空;调节热压烧结炉温度至1200~1500℃,压强大于20MPa,并保温保压2~5h;形成**钼靶材坯料;
2、对**钼靶材坯料进行热轧处理,将**钼靶材坯料加热至1200~1500℃,之后进行轧制处理,形成第二钼靶材坯料;
3、热轧处理后,对第二钼靶材坯料进行退火处理,退火处理的方法为调节温度为800~1200℃,保温加热第二钼靶材坯料2~5h,形成钼靶材。
钼材料的应用
1.可以在衬底上形成薄膜,广泛应用电子元器件和电子产品;
2.钼电接触电阻很低,具有优良的物理性质和化学性质,应用于玻璃镀膜上;生长CIGS 薄膜太阳能电池通常都是用金属钼作为背电;
3.应用于耐磨材料、高温腐蚀、装饰用品等行业;
4.钼材料还应用在真空高温行业,电子、能源、冶金行业,蓝宝石热场及航空航天制造行业等。
以上就是今日小编为大家介绍的高纯金属钼材料,感谢大家耐心地阅读!
江西本地废钼回收企业排名
钼是一种重要的金属元素,化学符号为Mo,原子序数为42。它是一种银白、有光泽的金属,密度较大,具有很高的熔点和沸点。钼是一种重要的合金元素,通常与铁、镍、铜等金属元素合金化,用于制造耐高温、耐蚀的合金材料。
钼在工业、军事、航空航天领域有着广泛的应用。例如,钼合金常被用于制造航空航天器、航空发动机、核反应堆等高温高压环境下工作的设备。此外,钼合金也用于制造汽车发动机零部件、工具刀具、石油化工设备、火箭发动机等领域。
除了作为合金元素外,钼也是重要的工业催化剂。例如,氧化钼催化剂可用于制备硫酸、磷酸、氮肥等化工产品。钼还是一种重要的冶金元素,被广泛应用于冶炼和精炼金属材料的工艺中。
钼也是人体所的微量元素。它在人体内起着重要的作用,是酶的重要组成成分,参与机体的能量代谢、氮代谢和体内氧化还原过程。因此,钼也被广泛应用于医、保健品等领域。
在地球的壳幔中,钼的含量很。但由于其分布不均匀,钼矿资源的开发利用仍存在一定的挑战。目前,主要的钼矿产国包括中国、美国、智利、土耳其、俄罗斯等。为了地开发和利用钼资源,提高钼的回收率和利用效率,各国积投入研究和开发工作,以满足不断增长的工业需求。
钼molybdenum
元素符号Mo,银灰难熔金属,在元素周期表中属ⅥB族,原子序数42,原子量95.94,面心立方晶体,常见化合价为+6、+5、+4。
在中世纪就使用辉钼矿(MoS2),因其外观很像石墨,被误认为是变态的石墨而用来制作铅笔芯。1778年瑞典化学家舍勒(C.W.Scheele)用硝酸分解辉钼矿,从中发现了一种新元素,以希腊文molybdos(似铅)命名。1782年瑞典化学家耶尔姆(P.J.Hjelm)首次制得金属钼(第三届全国有金属冶炼化工工程技术交流会暨成果展示会)。
资源
钼矿分布虽广,但只有少数矿床有开采价值。美国是钼矿的国家,产量占世界总产量的60%以上,其次是智利和加拿大。中国的钼矿产于东北、西北和中南等地区。具有工业价值的钼矿物为辉钼矿,其开采量占钼矿总开采量的90%。辉钼矿容易浮选,可由含钼0.06~0.3%的原矿选得含钼47~50%的精矿。钼的次生矿钼钨钙矿[Ca(Mo,W)O4]、铁钼华(Fe2O3·MoO3·H2O)、钼铅矿 (PbMoO4)和钼铜矿[2CuMoO4·Cu(OH)2]等也有一定开采价值。主要钼矿生产国(中国除外)的钼矿储量和产量(1979年,以钼计)如下:
性质和用途
常温下钼在空气中很稳定,高于600℃时很快地氧化生成三氧化钼(MoO3)。钼与氢不发生化学反应,但钼粉能吸收氢。在温度高于700℃时,水蒸气能将钼氧化成二氧化钼(MoO2)。钼与碳、碳氢化合物或一氧化碳在高于800℃下反应生成碳化钼(Mo2C)。钼能耐稀硫酸、氢氟酸、磷酸等酸腐蚀,但不耐硝酸、王水和氧化性熔盐的腐蚀。钼在常温下能耐碱,但在加热时则被碱腐蚀。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件。金属钼(第三届全国有金属冶炼化工工程技术交流会暨成果展示会)在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
冶炼
钼生产的主要原料为辉钼精矿。提取过程包括氧化焙烧,三氧化钼、钼粉和致密钼的制取等主要步骤,工艺流程见图。
辉钼精矿的氧化焙烧
一般在600℃下进行,主要化学反应为:2MoS2+7O2─→2MoO3+4SO2↑。焙烧温度不能超过650℃,否则造成MoO3的大量挥发和炉料的粘结。焙烧设备多采用连续操作的多膛炉或间歇操作的反射炉,也可以用流态化炉焙烧。
三氧化钼的制取
将焙砂用氢氧化铵溶液浸出(见浸取),生成钼酸铵溶液:
MoO3+2NH4OH─→(NH4)2MoO4+H2O
液中的铜、铁等杂质用硫化铵或硫化钠使它生成硫化物沉淀除去,然后加入硝酸铅除去过剩的硫离子。将溶液加热到55~65℃,用盐酸调节pH为2~2.5,在激烈的搅拌下析出多钼酸铵[(NH4)2O·mMoO3·nH2O]。为了进一步去除钙、镁、钠等杂质,可将多钼酸铵重新溶于氢氧化铵溶液中形成钼酸铵,过滤后将溶液蒸发,使氨挥发,而钼生成仲钼酸铵结晶[(NH4)2O·7MoO3·4H2O],经脱水和煅烧后得到纯度99.95%的三氧化钼。氧化钼的制取还可采用升华法,将焙砂在900~1000℃下加热,三氧化钼因蒸气压较高不断挥发,经布袋收尘器收集后,得到纯度大于99%的三氧化钼细粉。利用此法也可处理金属钼废料以回收钼。
金属钼粉的生产
在管状电炉中用氢还原三氧化钼。工业生产还原过程分两步:先在450~650℃下将MoO3还原成MoO2,再在900~950℃下将MoO2还原成钼粉。MoO3还可用碳还原成钼粉,但纯度较差。
致密钼的制取
①粉末冶金法,是将钼粉用酒精甘油溶液润湿混合,在压力约3吨力/厘米2下压制成坯条或坯块。将坯条在氢气氛中于1100~1200℃下预烧结,随后把电流直接通入坯条,使之加热到2200~2400℃进行高温垂熔(即高温烧结,见钨),得致密金属钼(第三届全国有金属冶炼化工工程技术交流会暨成果展示会)坯条。②熔铸法,一般是将已烧结的钼条进行真空自耗电弧重熔,可以得到重达数吨的钼锭。为了制取高纯钼锭,可采用真空电子束熔炼法和区域熔炼法。