马鞍山专业废钼回收厂商地址
钼箔/钼板/钼片(MO1)钼,是银白的坚硬金属。很重,比重为l0.2。难熔,熔点高达2620℃。纯净的钼富有延展性,但含有少量杂质时,变得很脆。
钼箔/钼板/钼片(MO1)钼的化学性质也很稳定,不会被盐酸,氢氟酸及碱液所腐蚀,但在硝酸,王水或热浓硫酸中会被腐蚀。在纯氧中,加热到500℃以上,钼会燃烧,变成三氧化钼。金属钼的用途并不太广,主要是用来制造真空管的,电灯泡里的钨丝托架等。
钼箔/钼板/钼片(MO1)钼1927年,人们制成超纯金属钼,纯度高达99.999%,拉成细丝,用作集成电路的导线。另外,金属钼丝还用于机床的电火花加工。近年来我国制成的数控线切割机床,就是用金属钼丝导电,进行切割――电火花加工的。在惰性气体的保护气氛中,钼丝和钨丝可配制成高温热点偶,用以测量1200-2000℃的高温。
钼与钨的性质相近,其沸点和导电性能突出,线热膨胀系数小,较钨易于加工。
金属钼的热导率[135瓦/(米·开)]与比热[0.276千焦/(千克·开)]呈佳搭配,使它成为抗热震和热疲劳的天然选择。它的熔点为2620℃,次于钨、钽,但密度却较之低得多,因此其比强度(强度/密度)大于钨、钽等金属,在对重量要求关键的应用中,更为有效。钼在1200℃仍有高的强度。
钼的主要缺点是抗高温氧化性能差(高于600℃迅速氧化)和室温延性不佳。为扬长避短,对高温氧化问题多采用涂层(如涂MoSi2、镀镍、镀铬等)办法控制;对塑性过差即通常说的低温脆化的欠缺,则通过合金强化和加人碳化物实现强化等措施解决。
钨(W)、铼(Re)、钽(Ta)、钛(Ti)和锆(Zr)等是常见的固溶强化元素。钨是钼的主要固溶强化元素,铼可把延脆转变温度降到—200℃。由它们形成的工业钼合金参见表。其中由镧构成的钼镧合金显示出为突出的抗蠕变及高温变形能力,其在高温下的这一特性表现得尤为明显。
废钼回收的环保意义与政策支持
钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。
马鞍山专业废钼回收厂商地址
用途:
1,钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。
低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。 HI98130 不锈钢中加入钼,能改善钢的耐腐蚀性。
在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种耐高温部件。
金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。
二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
2,钼在电子行业有可能取代石墨烯
美国加州纳米技术研究院(简称CNSI)成功使用MoS2(辉钼,二硫化钼)制造出了辉钼基柔性微处理芯片,这个MoS2为基础的微芯片只有同等硅基芯片的20%大小,功耗低,辉钼制成的晶体管在待机情况下的功耗为硅晶体管的十万分之一,而且比同等尺寸的石墨烯电路更加廉价。
而大的变化是其电路有很强的柔性,薄,可以附着在人体皮肤。 HI8733辉钼是未来取代硅基芯片竞争者。领导研究的安德拉斯&midDOt;基什教授表示,辉钼是良好的下一代半导体材料,在制造超小型晶体管、发光二管和太阳能电池方面具有很广阔的前景。
同硅和石墨烯相比,辉钼的优势之一是体积更小,辉钼单分子层是二维的,而硅是一种三维材料。在一张0.65纳米厚的辉钼薄膜上,电子运动和在两纳米厚的硅薄膜上一样容易,辉钼矿是可以被加工到只有3 个原子厚的!
辉钼所具有的机械特性也使得它受到关注,有可能成为一种用于弹性电子装置(例如弹性薄层晶片)中的材料。 可以用在制造可卷曲的电脑或是能够贴在皮肤上的装置。甚至可以植入人体。
3,纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。
合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。
4,钼在其它合金领域及化工领域的应用也不断扩大。HI98128例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域。
由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。
扩展资料:
钼(mù)为人体及动植物的微量元素。为银白金属,硬而坚韧。人体各种组织都含钼,在人体内总量为9mg,肝、肾中含量高。
钼是一种过渡元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。在氧化的形式下,钼很可能是处于+6价状态。
虽然在电子转移期间它也很可能首先还原为+5价状态。但是在还原后的酶中也曾发现过钼的其他氧化状态。钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。
钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。
在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级合金,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。
金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。
在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。
钼的化合物在农业肥料中也有广泛的用途。
一、钼矿原料特点
钼在地壳中的元素丰度约为1×10-6,在岩浆岩中以花岗岩类含钼高,达2×10-6。钼在地球化学分类中,属于过渡性的亲铁元素。在内生成矿作用中,钼主要与硫结合,生成辉钼矿。
辉钼矿(MoS2)是自然界中已知的30余种含钼矿物中分布广并具有现实工业价值的钼矿物。其他较常见钼的含钼矿物还有铁钼华([Fe3+(MoO4)8·8H2O]),钼酸钙矿(CaMoO4),彩钼铅矿(PbMoO4),胶硫钼矿镁(MoS2),蓝钼矿(Mo3O8·nH2O)等。
辉钼矿存在着多型,实验表明,其多型的出现与形成温度有关,2H型的辉钼矿形成温度高于3R型的辉钼矿。温度由低到高形成非晶质MoS2→胶体MoS2→3MoS2→2HMoS2。测温资料说明辉钼矿形成温度有较宽的区间,可自相当高温直到相对较低的温度,而大量形成于高至中温阶段。在热液作用下,MoS2在较酸性条件下沉淀,即辉钼矿在酸性条件下为稳定,当溶液转向中性时,钼变为可溶的硫代钼酸盐和钼酸盐而再活动。在低温和常温条件下,Mo4+在强酸性还原环境中生成胶硫钼矿(MoS2),它氧化后的产物是蓝钼矿(Mo3O8·nH2O)。外生作用中,钼呈Mo6+,具较强的活动性。它与铀相似,在接近中性或偏碱性的氧化与还原的过渡环境中稳定,由此生成多种含铀的钼酸盐矿物,如钼铀矿[(UO2)MoO4·4H2O],钼钙铀矿[Ca(UO2)3(MoO4)·(OH)2·11H2O]等。铁钼华[Fe2(MoO4)3·nH2O]是硫化矿石在酸性条件下(pH=3~5)形成的常见矿物。彩钼铅矿是含钼的铅锌矿在中性条件下的产物。
铼与钼的离子半径相近,故经常置换钼而富集于辉钼矿中,成为工业用铼的主要来源。辉钼矿中的铼含量往往与辉钼矿中3R型含量及成矿溶液中的铼含量有关。钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级合金,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。钼的化合物在农业肥料中也有广泛的用途。一、钼矿原料特点钼在地壳中的元素丰度约为1×10-6,在岩浆岩中以花岗岩类含钼高,达2×10-6。钼在地球化学分类中,属于过渡性的亲铁元素。在内生成矿作用中,钼主要与硫结合,生成辉钼矿。辉钼矿(MoS2)是自然界中已知的30余种含钼矿物中分布广并总氮具有现实工业价值的钼矿物。其他较常见的含钼矿物还有铁钼华([Fe3+(MoO4)8·8H2O]),钼酸钙矿(CaMoO4),彩钼铅矿(PbMoO4),胶硫钼矿(MoS2),蓝钼矿(Mo3O8·nH2O)等。辉钼矿存在着多型,实验表明,其多型的出现与形成温度有关,2H型的辉钼矿形成温度高于3R型的辉钼矿。温度由低到高形成非晶质MoS2→胶体MoS2→3MoS2→2HMoS2。测温资料说明辉钼矿形成温度有较宽的区间,可自相当高温直到相对较低的温度,而大量形成于高至中温阶段。在热液作用下,MoS2在较酸性条件下沉淀,即辉钼矿在酸性条件下为稳定,当溶液转向中性时,钼变为可溶的硫代钼酸盐和钼酸盐而再活动。在低温和常温条件下,Mo4+在强酸性还原环境中生成胶硫钼矿(MoS2),它氧化后的产物是蓝钼矿(Mo3O8·nH2O)。外生作用中,钼呈Mo6+,具较强的活动性。它与铀相似,在接近中性或偏碱性的氧化与还原的过渡环境中稳定,由此生成多种含铀的钼酸盐矿物,如钼铀矿[(UO2)MoO4·4H2O],钼钙铀矿[Ca(UO2)3(MoO4)·(OH)2·11H2O]等。铁钼华[Fe2(MoO4)3·nH2O]是硫化矿石在酸性条件下(pH=3~5)形成的常见矿物。彩钼铅矿是含钼的铅锌矿在中性条件下的产物。铼与钼的离子半径相近,故经常置换钼而富集于辉钼矿中,成为工业用铼的主要来源。辉钼矿中的铼含量往往与辉钼矿中3R型含量及成矿溶液中的铼含量有关。
钼是一种金属元素,元素符号:Mo,英文名称:Molybdenum,原子序数42,是VIB族金属。钼的密度为10.2g/cm³,熔点为2610℃,沸点为5560℃。钼是一种银白的金属,硬而坚韧,熔点高,热传导率也比较高,常温下不与空气发生氧化反应。作为一种过渡元素,易改变其氧化状态,钼离子的颜也会随着氧化状态的改变而改变。钼是人体及动植物所的微量元素,对人以及动植物的生长、发育、遗传起着重要作用。钼在地壳中的平均含量为0.00011%,钼资源储量约为1100万吨,探明储量约为1940万吨。由于钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,被广泛应用于钢铁、石油、化工、电气和电子技术、医和农业等领域。
虽然钼是在18世纪后期被人们发现的,但在钼被发现之前,就已经被人们使用,如14世纪,日本使用含钼的钢制造马刀。16世纪,辉钼矿因为与铅、方铅矿及石墨的外观和性质都很相似,被人们当作石墨使用,当时的欧洲人还将这几种矿石统称为“molybdenite”。
1754年,瑞典化学家BengtAnderssonQvist检测了辉钼矿,发现里面不含铅,因而他认为辉钼矿与方铅矿并不是同一种物质。
1778年,瑞典的化学家舍勒发现硝酸与石墨不起反应,而与辉钼矿反应后获得一种白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。他认为这种白粉末是一种金属氧化物,用木炭混合后强热,并没有获得金属,而当它与硫在一起加热后却得到原来的辉钼矿,因而他认为辉钼矿应该是一种未知元素的矿物。
根据舍勒的启发,1781年,瑞典人耶尔姆用“碳还原法”从这种白粉末中分离出一种新的金属,并将该金属命名为“Molybdenum”。
合金领域
钼在钢铁领域的消费量大,主要用于生产合金钢(约占钼在钢铁消耗总量中的43%)、不锈钢(约23%)、工具钢和高速钢(约8%)、铸铁和轧辊(约6%)。钼大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分则先熔炼成钼铁,然后再用于炼钢。钼作为钢的合金元素具有以下优点:提高钢的强度和韧性;提高钢在酸碱溶液和液态金属中的抗腐蚀性;提高钢的耐磨性;改善钢的淬透性、焊接性和耐热性。例如,含钼量为4%-5%的不锈钢往往用于诸如海洋设备、化工设备等侵蚀、腐蚀比较严重的地方。
以钼为基体加入其他元素(如钛、锆、铪、钨及稀土元素等)构成有合金,这些合金元素不仅对钼合金起到固溶强化和保持低温塑性的作用,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼基合金因为具有良好的强度、机械稳定性、高延展性而被用于高发热元件、挤压磨具、玻璃熔化炉电、喷射涂层、金属加工工具、航天器的零部件等。
钼:稀缺战略小金属,存在形式多样,单一和铜、钨钼矿伴生共存
钼是一种银白金属,熔点 2617℃,沸点 4612℃,比重 10.22(20℃)。其物理化学性 质与钨相似,在高温下的蒸气压很低,蒸发速度小。
钼的性能是导电性和导热性强,硬 度和强度限比钨低,加工性能稳定,受压较易加工,在没有氧化剂的条件下,钼对无机酸 具有突出的耐腐蚀性能。
但在稀硝酸、沸腾的盐酸和热的王水,200—250℃的浓硫酸以及氢 氟酸和硝酸的混合物中,能迅速地被溶解,在空气中温度大于 600℃时,钼易氧化。
钼行业产业链上游是矿山,主要负责钼矿的采选和钼精矿的生产;中游是焙烧厂,负责 钼精矿的焙烧和冶炼,产生各种产品;下游是钼的相关应用,包括钢铁行业、石油行业、军 工材料等。
中国钼资源储量,占比超 50%
钼资源分布高度集中。根据 USG 数据,2021 年钼储量 1600 万吨,中国储 量 830 万吨,占比超过 51%,是钼资源的国家;
美国和秘鲁分列第二、第三位, 拥有 270 万吨和 230 万吨钼储量,CR3 资源储量占储量的 83%。
中国钼矿资源,总储量 830 万吨,探明储量的矿区 222 处,分布于 28 个省。河南 省钼矿资源,钼储量占全国总储量的 30.1%,其次是陕西和吉林,三省钼储量合计占 全国 56.5%以上。
国内钼矿矿床规模大,陕西金堆城、河南栾川、辽宁杨家杖子、吉林大黑 山钼矿均属于世界级规模的大矿。
下游应用广泛,市场集中度较高
钼应用广泛,主要作为生产低合金钢、合金钢、不锈钢、工具钢、铸铁、合金、 钼基合金等的添加剂。
据 IMOA 统计,2020 年钼消费结构为:合金钢 39%、特种不锈 钢 24%、合金工具钢 7%、铸铁/铸钢 8%、镍合金 3%、钼金属 6%、化工 13%。
中国钼矿石行业发展较为成熟,现已形成较为稳定的竞争格。中国钼矿石行业属于资 本密集型、资源依赖型及下游驱动型行业,具有较高的准入壁垒。
当前,中国钼矿企业均具 有成熟的下游销售渠道,受下游市场需求旺盛影响,同业企业间竞争压力小。
根据年 产量分为大中小型企业,其中,年产 3 万吨以上为大型企业,1-3 万吨为中型企业,1 万吨 以下为小型企业。
中国钼矿石行业市场集中度较高,规模以上从事钼矿石开采、洗选等相关业务企业数量 约 30 余家,中国钼矿企业市场规模两级分化较为明显。、金堆城钼业等头部企业 占据市场份额超过 50%。
供不应求确定性高,钼价有望维持高位,国内产量增长有限,海外无新增产能
根据钼协会(IMOA)公布的数据显示,2021 年钼产量为 26.12 万吨,比 2020 年的 27.32 万吨下降了 4%。
2021 年钼消费量为 27.72 万吨,比前一年的 24.48 万吨增 长了 13%,供应缺口 1.6 万吨,缺口比例 5.8%。
中国是大的钼生产国,从 2020 年的 88450 吨增加到 2021 年的 100833 吨,同比增加 14%,是 2021 年唯一产量增长的地区,其中 2020 年受伊春鸣尾矿库泄漏事件及陕西暴雨影响,产量有所下滑。
南美是第二大钼生产地区, 产量为 82236 吨,比上一年的 90219 吨下降 9%;北美地区产量为 58332 吨,比 2020 年的 69717 吨减少 16%;其他国家和地区的产量降幅大,从 2020 年的 24857 吨下降到 19822 吨。
国内钼矿上市公司主要有、和吉翔股份。其中,金钼股份拥有的 资源储备和领先的产业规模,钼生产经营规模位居前列。
公司正在运营自有矿山金堆城 钼矿和汝阳东沟,同时公司还参股了沙坪沟钼矿和吉林天池季德钼矿,2021 年公司钼产量 为 2.12 万吨。
目前正在运营三道庄钼矿和上房沟钼矿,新疆钼矿为储备资源,目 前尚未开发,2021 年公司钼产量为 1.6 万吨。吉翔股份正在运营内蒙古乌拉特前旗沙德盖苏 木西沙德盖钼矿,2021 年钼产量为 3.9 万吨。
海外钼企业中,麦克莫兰自由港公司是大的钼矿生产商,其钼产品主要来源于北 美 7 个、南美 2 个矿山与位于美国科罗拉多州的两大钼矿 Henderson、Climax。
公司 2021 年钼产量为 3.86 万吨。为应对钼需求的增长,公司 2022 年计划在 Lone Star 铜矿、 Cerro Verde 矿山和两个钼矿分别扩大开采率,预计钼总年产量可达 4.09 万吨。
墨西哥集团 2021 年钼产量为 3.03 万吨,据公司年报披露,2022 年公司计划小幅增加钼产量,预计 2022 年产量达 3.2 万吨。公司将会持续在秘鲁 Apurimac 地区进行开发。
智利 Codelco 是 第二大钼生产商,公司 2020 年钼产量 2.8 万吨,2021 年由于 Chuquicamata 和 Andina 矿山减产,钼产量下降至 2.1 万吨。
钼作为公司铜矿副产品,由于未来几年铜矿计划产量无 明显变化,因此钼产量预计与 2020 年持平。
集团 Kennecott 公司 2021 年钼产量同比 下降 62.7%至 0.76 万吨,主要是受到相关机构干预导致,目前暂无扩产计划,预计未来几 年钼产量仍将维持在 2021 年的水平。
未来钼产量增量有限,海外市场无明显增量,国内市场有小部分增量出现。
2022 年将会对黑龙江铜山铜矿、福建紫金山罗卜岭铜(钼)矿、塞尔维亚博尔铜业 JM 铜矿、 塞尔维亚丘卡卢-佩吉铜金矿下带矿等 4 个地下大型斑岩型矿床进行崩落法采矿,钼作为伴生 产品将会有少量产量增加。
中高端钢材替代加快,下游需求旺盛
中国是钼消费量大的国家,钼消费量从 2020 年的 10.64 万吨上升到 2021 年的 11.14 万吨,增长了 5%,增幅小;欧洲的钼消费量居第二位,为 58921 吨,比 2020 年的 53025 吨增长 11%;
美国作为第四大钼消费国,钼用量从 2020 年的 20956 吨增加到 2021 年的 27170 吨,增长 30%,增幅大;日本的钼消费量为 23859 吨,比 2020 年的 20457 吨增 加了 16%。
近年来,国家制定了一系列产业支持中高端合金钢行业的发展,明确了具有高技术 含量且用于高端制造业的特钢产品的重要。
钼作为“战略稀有小金属”,其在传统钢铁 领域和领域需求都较为旺盛。一方面,我国正在大力推动传统基建、地产、水利的复 苏,因此国内对钢铁的需求明确,因此钼的需求也将稳步增长;
另一方面,在领域, 钼也发挥着重要作用。比如光伏领域,钼是薄膜板背电的金属材料之一;
再比如风力发电, 将发电叶片采用较薄的钼合金钢外壳和支撑框架可减重 20-40%。新能源行业的发展将 进一步促进钼的需求增长。
钢是在冶炼过程中加入了较多的合金元素及采取了的生产、加工工艺,特钢的 化学成分、组织结构以及机械性能均优于一般钢铁。
在汽车、机械、化工、船舶、铁路、航 空航天、国防军工等对钢材质量要求较高的领域得到广泛使用。
未来随着航空航天、国防军 工的发展,以及诸多新兴产业的大发展,特钢的应用领域将持续扩展,需求量也将增加。
钢又被称为特钢或特种钢,钢产品种类,可分为碳素钢、低合金钢和 合金钢三大类。
按用途划分,特钢可分为结构钢(碳素结构钢和合金结构钢)、工具钢 (碳素工具钢、合金工具钢、高速工具钢)以及用钢(齿轮钢、轴承钢、弹簧钢、不锈 钢、高强度钢和高温合金)。
按技术含量和产品档次分,特钢产品可大致分为高端、中端和低端三个层次。其中,低 端产品是以碳素结构钢(碳素钢)为代表;
中端产品是以合金钢(不锈钢、工具钢、模具钢、 高速钢除外)为代表;高端产品是以不锈钢、工具钢、模具钢和高速钢为代表的产品。
特钢应用广阔,主要包括国防、电力、石化、核电、、汽车、航空、船舶、铁路等 行业的高端、特种装备制造领域。
随着我国经济结构优化调整逐步深化,制造业不断转型升 级,以军工产业、核电工业、高速铁路及汽车工业为代表的高端制造业迎来了、可持续 发展,有望进一步拉动中高端特钢的需求。
钢行业主要有两种工艺流程,一是长流程,是指以铁矿石、焦炭为主要原材料,利 用高炉冶炼得到液态铁水,铁水经过氧气转炉吹炼配以精炼炉得到合格钢材,高炉容积较大, 熔炼后产品加工通常采用连铸、连扎成型工艺,适合大批量生产;
二是短流程,是指以废钢 和合金为主要原材料,废钢经破碎、分选后装入电炉来熔炼废钢,并配以精炼炉完成脱气、 调成份、调温度、去夹杂等功能,得到合格钢材,电炉容积较小,熔炼后产品加工通常采用 模铸、锻造成型工艺,适合小批量生产。
目前我国钢产量占钢材总产量比重较低,远低于发达国家。2021 年我国钢产 量为 13789.14 万吨,占我国粗钢产量的比例约为 13.35%。
根据产业信息网的数据显示,2020 年日本钢产量为 1743.7 万吨,占日本粗钢产量的比重为 20.96%。
根据《我国钢行业的现状及发展趋势》一文,钢占比高的瑞典,比重为 55%,德国占比 22%, 法国、意大利占比 17%。
从细分产品来看,我国钢中非合金钢和低合金钢的占比较大。2021 年我国非合金 钢产量为 5939 万吨,占比 38.90%;低合金钢的产量为 4983 万吨,占比 32.63%。其次为 合金钢、不锈钢,其产量分别为 2932.7 万吨、1636 万吨,占别为 24.40%、4.07%。
中国钢铁行业正在经历结构调整,将向高性能高附加值的不锈钢、特种钢等合金钢方向 发展。
中国工业化及城镇化进程的加速推进,以及印度、巴西、中东等其他新兴国家 钢铁产量仍将保持增长,也将进一步拉升对钼的需求。 中高端不锈钢增速明显加快。
根据中国特钢协会不锈钢分会数据显示,2021 年中国不 锈钢粗钢产量为 3063.2 万吨,同比增加 49.3 万吨,增长 1.64%,其中 Cr-Ni 钢(300 系)1506.7 万吨,同比增长 4.78%;
Cr 钢(400 系)526.7 万吨,同比增长 5.78%;Cr-Mn 钢(200 系)905.8 万吨,同比下降 6.07%。此外,2021 年中国双相不锈钢产量再高,达到 24.05 万吨, 同比增加 4.9 万吨,同比增长 25.67%。
合金钢与非合金钢增速分化显著。近年来在国家支持下以及钢铁行业结构转型的背 景下,合金钢与非合金钢分化明显,2020 年和 2021 年合金钢产量增速分别为 14.89%和 2.23%;非合金钢产量增速分别为 7.48%和 0.15%。
高速工具钢产量自 2015 年至 2019 年 逐年增加,2020 年和 2021 年受以及产业链影响出现下滑,未来在下游需求的 强烈带动下高速工具钢产量将逐步回升。
我们按钼初级产品下游消费结构把钼需求拆分成钢铁行业、钼金属和化工钼三大板块。
其中,钢铁行业钼需求拆分成合 结构钢、特种不锈钢(316 及 316L、双相不锈钢)、高速 工具钢、其他工具钢和高温合金钢。根据我们的测算,2022-2024 年国内钼需求量分别为 12.64、13.69、14.81 万吨。
供需紧平衡,钼价高位震荡
过去 20 年钼历史价格演变可以分为四大阶段: 在 2008 年经济危机之前,经济高速增长,直接拉动了合金钢和不锈钢需求。
钼消费随之扩张,钼供给匹配钢铁行业扩张速度,进入供需错配,这一阶段钼价迅速 冲高,虽有震荡当在很长一段时间保持高位;
2008-2016 年,受经济危机影响制造业遭遇滑铁卢,此前累积扩张的大量产能 无法出清,行业转为过剩。钼价格断崖式下跌,并长时间处于低谷;
2016-2020 年,由于钼价格长期处于低迷状态,多个矿山产能关停推出,中国钼厂 商也达产减产协议,供给侧出现约束,钼价格逐渐出现反弹;
2020 年以后,肆海外冶炼产能停滞,大量钼精矿涌入国内,钼价格再次 出现回落;随着得到控制,经济逐步向好,2021 年钼价格再次飙升。
重点公司分析
金堆城钼业股份有限公司(简称“”)是钼行业内具有较强影响力的钼供应商,为钼协会执行理事单位、中国有金属工业协会钼业分会会长单位,被中国 矿业联合会授予“中国钼业之都”称号。
公司拥有钼采矿、选矿、冶炼、化工、金属加工、科研、贸易一体化全产业链条。主要 生产钼冶金炉料、化学化工、金属加工三大系列二十多种品质优良的各类钼产品,广泛应用 于钢铁冶炼、石油化工、航空航天、国防军工、电子照明、等领域。
公司拥有两大矿区金堆城钼矿和汝阳东沟钼矿,其中金堆城钼矿矿床形态简单,产状品 味变化均衡稳定,是世界级特大型钼矿床之一,矿石资源量约 48 亿吨,储量约 34 亿吨。
汝 阳东沟钼矿金属储量 2.8 亿吨,矿石天然品质优良,具有品位较高、含杂低、易于深加工、 适合大型露天开采等特点。
2021 年公司钼业务占比超过 84%,钼炉料营收占比为 56%,同比提升 18.1pct;钼金 属营收占比为 16%,同比提升 5.5pct;电解铜营收占比为 7%,同比下降 23.7pct。
公司通 过调整业务结构以及降本增效措施,毛利率从 2017 年的 7.66%提高到 2021 年的 21.95%。
公司主要从事基本金属、稀有金属的采、选、冶等矿山采掘及加工业务和矿产贸易业务。 目前公司主要业务分布于亚洲、非洲、南美洲、大洋洲和欧洲五大洲。
是领先的钨、钴、 铌、钼生产商和重要的铜生产商,亦是巴西领先的磷肥生产商,同时公司基本金属贸易业务 位居前三。
2012 年公司 A 股上市以来,公司加速化、多元化战略推进,持续布多金属品类。
2013 年澳大利亚 NPM 铜金矿、2016 年刚果(金)TFM 铜钴矿及巴西铌磷资产、 2019年第三大金属贸易公司 IXM,2020年再次 Kisanfu铜钴矿进一步增强铜、 钴资源布。
公司拥有的钨钼资源。公司是前七大钼生产商及大白钨生产商之一,从事钼、 钨、铁金属的采选、冶炼、深加工、科研等,拥有钼钨采矿、选矿、冶炼、化工等上下游一 体化业务。
主要产品包括钼铁、仲钨酸铵、钨精矿及其他钼钨相关产品,同时回收副产铁、 铜、萤石、铼等矿物。2021 年,钼金属产量为 16385 吨,钨金属产量为 8658 吨。
为了钼精矿质量,有时需要进一步分离钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物,如使用硫化钠、硫氢化钠、氰化物或铁氰化物抑制铜和杂质含量。钼精矿冶炼主要采用以下几种方法:
氧化焙烧:将辉钼矿进行焙烧得到钼焙砂,然后通过升华法或湿法制得三氧化钼,用氨浸出时生成钼酸铵进入溶液,与不溶物加以分离。溶液经浓缩结晶得到钼酸铵晶体,或加酸酸化生成钼酸沉淀,从而与可溶性杂质分离。二者经煅烧后都生成纯净的三氧化钼,然后用氢还原法生产金属钼。根据焙烧设备或添加组分的不同,可将该方法分为回转窑焙烧工艺、反射炉焙烧工艺、多膛炉焙烧工艺、流化床焙烧工艺、闪速炉焙烧工艺。该方法会产生大量的烟气,污染环境,钼回收率较低,伴生的稀有元素铼几乎随着烟气跑掉,不适合处理低品位矿石和复杂矿。
硝酸浸出法:在高压釜内使MOS2氧化为可溶性钼酸盐,该方法主要是消耗廉价的氧化剂-空气或纯氧。该方法需要高温高压,对反应设备要求高,反应条件,生产技术难度大,浸出过程的工艺条件也较难控制,生产过程中也存在一定的隐患,目前国内已暂停使用该方法。
次氯酸钠浸出法:主要用于处理低品味中矿、尾矿的浸出。在氧化浸出过程中,次氯酸钠本身也会缓慢分解析出氧,其他一些金属硫化物也会被次氯酸钠氧化,这些金属的离子货氢氧化物又会与钼酸根生产钼酸盐沉淀,促进溶液的钼又返回到渣中。该方法反应条件温和,生产易于控制,对设备要求不高,但原料次氯酸钠消耗量大而造成生产成本过高。
电氧化浸出法:是由次氯酸钠法改进而来,该方法是将已经浆化的辉钼矿物料加入到装有氯化钠溶液的电解槽中,在电氧化过程中,阳产物Cl2又与水反应,生产次氯酸根,次氯酸根再氧化矿物中的硫化钼,使钼以钼酸根形态进入溶液中。该方法继承了次氯酸钠浸出率高、反应条件温和、的特点,并且能够较为方便的控制、调节反应的方向、限度、速率。
目前也出现了一些新方法,如辉钼矿精矿不经氧化焙烧,直接用氧压煮法或细菌浸出法提取纯三氧化钼。对低品位氧化矿用硫酸浸出,从溶液中用离子交换法或萃取法提取纯三氧化钼。