江苏专业废钼回收哪个好
钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数是42,是一种灰的过渡金属。因为一开始钼矿石与铅矿石被混淆了,因此Molybdenum之名来自新拉丁语 molybdaenum,后者来自古希腊语 Μόλυβδος molybdos,意思是铅。钼矿石在历史上被人们所熟知,但该元素的发现(即从其它金属中区分出来)是在1778年,由卡尔·威廉·舍勒识别出来。该金属在1781年次被彼得·雅各·耶尔姆分离得出。
钼在地球上没有自然金属的形态,但是在矿物中以各种氧化物的形式出现。在单体元素形式中,钼是一种灰金属,呈灰口铸铁颜,是元素中熔点排名第六高。它很容易在合金中形成坚硬、稳定的碳化物,因此,世界上大多数钼产品(约80%)都被用作某种铁合金,包括高强度合金和高温合金。
大多数钼化合物在水中微溶,但是当含钼的矿物与氧气和水接触时可以形成钼离子MoO2−4。在工业上,钼化合物(世界上约有14%的产品)被用于高压和高温应用品,如素或催化剂等。
目前,一些细菌在大气氮分子的化学键上常用的催化剂是含钼酶,能起到生物固氮作用。在细菌和动物中,虽然只有细菌和蓝藻酶会参与到固氮活动中,但已知的含钼酶至少有50种。这些固氮酶含钼的形式与其它含钼酶不同,但都有氧化形式的钼,用以搭配钼辅因子。由于钼的各种辅因子酶的多样功能,钼成为高于真核生物组织的膳食矿物质,虽然并非细菌到钼。
在18世纪,辉钼矿往往被认为是铅矿。1778年瑞典的卡尔·威廉·舍勒从辉钼矿中提取出了氧化钼,根据舍勒的启发,1781年他的朋友,同是瑞典人的彼得·雅各布·海基尔姆把钼土用“碳还原法”分离出新的金属钼。
钼主要用于钢铁工业。 0.3%的钼添加剂可提高几种钢种的铸铁强度和耐腐蚀性。耐锈和耐酸的钼钢合金含有0.4至3.5%的钼。表面处理可以提高含钼钢的机械强度。一些钢的钼含量也可达到14.5%。钼替代某些钢种的镍。在这种情况下,获得Cr-Mo钢代替Cr-Ni钢。目前,钼还用于生产耐热合金。
化合物应用
MoO3催化剂用于许多有机化学过程,例如重整过程,石油馏分的脱硫,邻苯二甲酸酐,马来酸酐和蒽醌等。产生其混合氧化物用作丙烯醛和丙烯酸生产中的催化剂。钼化合物用于颜料,染料,试剂,润滑剂,催化剂,缓蚀剂,陶瓷助剂,微量元素等。产生。硼化钼,碳化物,硅化物具有半导体特性。
钼作为辅酶
钼是大多数生物中的元素。事实上,早期的地球海洋缺乏钼可能会对真核生物(包括植物和动物)的演化产生强烈影响。
目前已经鉴定出至少50种酶含有钼,主要存在于细菌中。这些酶包括醛氧化酶,亚硫酸氧化酶和黄嘌呤氧化酶。 就功能而言,钼酶催化氧化反应,有时会在调节氮,硫和碳的过程中还原某些小分子。在一些动物和人类中,黄嘌呤氧化酶催化黄嘌呤氧化成尿酸,这是一种嘌呤分解代谢过程。黄嘌呤氧化酶的活性与体内钼的量含成正比。然而,高浓度的钼反而会抑制嘌呤分解代谢和其他过程。钼的浓度也会影响蛋白质的合成,代谢和生长。
Mo是大多数固氮酶中的组成成分。固氮酶催化大气氮气生产氨:
N2+8H++8e-+16ATP+16H2O→2NH3+H2+16ADP+16Pi
铁钼辅因子的生物合成是一个复杂的过程。
钼酸盐在体内以MoO42−形式运输。
目前尚未发现钼对人类的急毒性,毒性取决于其化学状态。研究显示,某些钼化合物,对老鼠的半数致死剂量(LD50)低至180 mg / kg,虽然没有人类毒性数据,但动物研究表明,长期摄入超过10毫克/天的钼可引起腹泻,生长迟缓,不孕,出生体重低和痛风;还会影响肺部,肾脏和肝脏。钨酸钠是一种竞争性的钼抑制剂,饮食钨会降低组织中钼的浓度
废钼回收的经济效益与成本分析
废钼回收的盈利空间受国际钼价、回收成本和下游需求三重影响。当前钼价波动较大(约20-40美元/磅),回收企业需灵活调整采购策略。成本方面,物流、分选和化学试剂占总支出的60%以上,尤其是低品位废料的提纯成本较高。但相比原矿开采,废钼回收可节省50%以上的能源费用,长期看经济效益显著。部分企业通过规模化回收和工艺创新(如废催化剂协同处理)降低成本,利润率可达15%-25%。
钼为人体及动植物的微量元素。
为银白金属,硬而坚韧。
人体各种组织都含钼,体内总量为9mg,肝、肾中含量高。
目录1基本资料2基本介绍2.1 发现2.2 视力2.3 危害3主要成分4产地分布5开发利用5.1 用途5.2 用5.3 使用5.4 钼合金6危害6.1 钼缺乏症6.2 钼过量6.3 钼污染6.4 对环境影响7代表地方7.1 钼业之都7.2 金寨钼矿7.3 温泉钼矿1基本资料拼音:[mù]部首:钅笔画:10五笔86:QHG五笔98:QHG仓颉:OPBU郑码:PLVV笔顺:撇横横横竖提竖横折钩横横横四角号码:86700Unicode:CJK统一汉字:U+94BC 基本字义:钼(钼)mù一种金属元素。
可用来生产特种钢,是电子工业的重要材料。
元素名称:钼(mù)CAS号:7439-98-7[1]安瓿中的钼杆元素符号:Mo钼元素英文名称:Molybdenum元素类型:金属元素原子体积:(立方厘米/摩尔) 9.4元素在太阳中的含量:(ppm) 0.009元素在海水中的含量:(ppm) 0.01地壳中含量:(ppm) 1.5相对原子质量:96原子序数:42质子数:42中子数:54所属周期:5所属族数:ⅥB电子层排布:2-8-18-13-1电子层:K-L-M-N-O外围电子层排布:4d5 5s1氧化态:Main Mo+6 ,Other Mo-2,Mo0,Mo+1,Mo+2,Mo+3,Mo+4,Mo+5 电离能(kJ /mol)M - M+ 685M+ - M2+ 1558M2+ - M3+ 2621M3+ - M4+ 4480M4+ - M5+ 5900M5+ - M6+ 6560M6+ - M7+ 12230M7+ - M8+ 14800M8+ - M9+ 16800M9+ - M10+ 19700晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。
晶胞参数:a = 314.7 pmb = 314.7 pmc = 314.7 pmα = 90°β = 90°γ = 90°莫氏硬度:5.5声音在其中的传播速率:5400m/s2基本介绍密度10.2克/立方厘米。
熔点2610℃。
沸点5560℃。
化合价+2、+4和+6,稳定价为+6。
钼是一种过渡钼精粉元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。
在氧化的形式下,钼很可能是处于+6价状态。
虽然在电子转移期间它也很可能首先还原为+5价状态。
但是在还原后的酶中也曾发现过钼的其他氧化状态。
钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。
发现1782年,瑞典的埃尔姆,用亚麻子油调过的木炭和钼酸混合物密闭灼烧,而得到钼。
1953年确知钼为人体及动植物的微量元素。
主要矿物是辉钼矿(MoS2)。
天然辉钼矿MoS2是一种软的黑矿物,外型和石墨相似。
18世纪末以前,欧洲市场上两者都以“molybdenite”名称出售。
1779年,舍勒指出石墨与molybdenite(辉钼矿)是两种不同的物质。
他发现硝酸对石墨没有影响,而与辉钼矿反应,获得一种白垩状的白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。
他认为这种白粉末是一种金属氧化物,用木炭混合后强热,没有获得金属,但与硫共热后却得到原来的辉钼矿。
1782年,瑞典一家矿场主埃尔摩从辉钼矿中分离出金属,命名为molybdenum,元素符号定为Mo。
我们译成钼。
它得到贝齐里乌斯等人的承认。
钼-99是钼的放射性同位素之一,他在医院里用于制备锝-99。
锝-99是一种放射性同位素,病人服用后可用于内脏器官造影。
用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中,当钼-99衰变时生成锝-99,在需要时可把锝-99从容器中取出发给病人。
钼是钢与合金中的重要元素,常用的含钼炉料有金属钼、钼铁,有时还可以使用氧化钼精矿来直接还原冶炼含钼钢种。
钼在地壳中的自然储量为1900万吨,可开采储量860万吨。
[1] 视力钼是组成眼睛虹膜的重要成分,虹膜可调节瞳孔大小,视物清楚,钼不足时,影响胰岛素调节功能,造成眼球晶状体房水渗透压上升,屈光度增加而导致近视。
大豆、扁豆、萝卜缨中含钼较高,此外还有糙米、牛肉、蘑菇、葡萄和蔬菜等。
[2]危害钼对人体生命健康危害大,它能够使体内能量代谢过程出现障碍,心肌缺氧而灶性坏死,易发肾结石和尿道结石,增大缺铁性贫血患病几率,引发龋齿,钼是食管癌的罪魁祸首,它还会导致痛风样综合征,关节痛及畸形、肾脏受损,生长发育迟缓、体重下降、毛发脱落、动脉硬化、结缔组织变性及皮肤病等生命健康隐患。
[3] 3主要成分 钼的性质钼位于门捷列夫周期表第五周期、第六副族,为一过渡性元素,钼原子序数42,原子量95.94,原子中电子排布为:ls2s2p3s3p3d4s4p4d5s 。
由于价电子层轨道呈半充满状态,钼介于亲石元素(8电子离子构型)和亲铜元素(18电子离子构型)之间,表现典型过渡状态.V . W.戈尔德斯密特在元素的地球化学分类里将它称亲铁元素。
[4]自然界里,钼有七个稳定的天然同位素,它们的核子数及其在天然混合物中所占比例如表1所列。
表1 钼的同位素及分配 同位数名称92Mo 94Mo95Mo96Mo97Mo98Mo100Mo∑各占比例(%)原子量15.8491.9063 9.0493.9047 15.7294.90584 16.5395.9046 9.4696.9058 23.7897.9055 9.6399.9076 100.0095.94 另据文献记载,已发现第八种天然同位素的存在。
此外,还发现钼有十一种人造放射性同位素,因资料数据不详,此不赘述。
钼为银白金属,钼原子半径为0.14nm 原子体积为235.5px/mol ,配位数为8,晶体为Az 型体心立方晶系,空间群为Oh (lm3m ),至今还没发现它有异构转变.常温下钼的晶格参数在0.31467~0.31475nm 之间,随杂质含量而变化。
钼熔点很高,在自然界单质中名列第六,被称作难熔金属,见表2(摘自《理化手册; 60th ) 钼的密度为10.23g/cm ,约为钨的一半(钨密度19.36g/cm )。
钼的热膨胀系数很低20~100℃时为4.9×10/℃;钼的热传导率较高,为142.35w/(m·k) 钼电阻率较低:0℃时为5.17×10Ω·cm ;800℃时为24.6×10Ω·cm ;2400℃时为72×10Ω·cm 。
钼属顺磁体,99.99%纯度的钼在25℃时比磁化系数为0.93×10cm/g 。
钼的比热在25℃时为242. 8J/(kg·k )。
钼的硬度较大,摩氏硬度为5~5.5。
钼在沸点的蒸发热为594kJ/mol ;熔化热为27.6 ±2.9kJ/mol ;在25℃时的升华热为659kJ/mol 。
表2 难熔物及熔、沸点 物质碳(C )钨(W )铼(Re ) 锇(Os )钽(Ta )钼(Mo )熔点(℃)沸点(℃) 3650~36974827 3410±105660 31805627 30455027±100 29965425±100 2622±105560钼的原子半径、离子半径与钨、铼的很接近。
原子半径(nm ) 4离子半径(nm ) 6离子半径(nm ) 钼钨铼0.1390.1400.1380.0680.0680.0650.065钼原子的电子排列体现了典型过渡元素的性质:次外层的五个4d 规道、外层的一个5s 规道上电子均呈半弃满状态。
这决定了钼的化学性质比较稳定。
常温或在不太高的温度下,钼在空气或水里是稳定的。
钼在空气中加热,颜开始由白()转暗灰;温升至520℃,钼开始被缓慢氧化,生成黄三氧化钼(MoO3温度降至常温后变为白);温升至600℃以上,钼迅速被氧化成MoO3。
钼在水节气中加热至700~800℃便开始生成MoO2,将它进一步加热,二氧化钼被继续氧化成三氧化钼。
钼在纯氧中可自燃,生成三氧化钼。
钼的氧化物已见于报道的很多,但不少是反应中间产物,而不是热力学稳定相态。
的只有九种,其结构与转化温度如表3。
表3 钼的氧化物氧化物生成温度范围(℃)结晶结构MoO2 菱形Mo4O11 1.9—2.1 ,说明有部分降解荧光光谱
链 cDNA 的合成:
以 RNA 为模板,反转录为 cDNA,由逆转录酶催化,该酶合成 DNA 时需要引
物引导,常用引物是 oligo dT、随机引物或基因特异引物(GSP)维生素 B2易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光照易分解,
对热稳定。维生素 B2 溶液在 430~440 nm 蓝光的照射下,发出绿荧光,荧
光峰在 535 nm。维生素 B2 在 pH=6~7 的溶液中荧光强度大,在 pH=11 的碱
性溶液中荧光消失,所以可以用荧光光度法测维生素 B2 的含量。
三、试剂与仪器:
总 RNA 提取试剂盒(天根 RNAprep Pure Cell/Bacteriit);链 cDNA
合成试剂盒(Tara PrimeScript™ RT Master Mix);无菌,无RNA酶离心
管无菌,无 RNA 酶枪头低温离心机等
四、实验操作:
1.提取总 RNA
1) 裂解细胞:确定细胞数量,吸除细胞培养基上清,加入 PBS 后吸除,加入
600ul 裂解液 RL(胍盐/ß-巯基乙醇)5min。
2) 将溶液转移至过滤柱 CS 上(过滤柱 CS 放在收集管中),12,000 rpm 离
心 2 min,收集滤液。
3) 向滤液中加入 1 倍体积 70%乙醇,混匀,得到的溶液和沉淀一起转入吸附柱
CR3 中, 12,000 rpm 离心 60 sec,倒掉收集管中的废液。
4) 向吸附柱 CR3 中加入 350
μ
l 去蛋白液 RW1,12,000 rpm 离心 60 sec,倒掉
收集管中的废液,将吸附柱 CR3 放回收集管中。
5) 向吸附柱 CR3 加入 80
μ
l 的 DNase I 工作液(10
μ
l DNase I 储存液
+70
μ
l RDD 溶液),室温放置 15 min。
6)向吸附柱 CR3 中加入 350
μ
l 去蛋白液 RW1,12,000 rpm 离心 60 sec,倒掉
收集管中的废液,将吸附柱 CR3 放回收集管中。
7)向吸附柱 CR3 中加入 500
μ
l 漂洗液 RW ,室温静置 2 min,12,000 rpm 离心
60 sec,倒掉收集管中的废液,将吸附柱 CR3 放回收集管中。再重复一次。
8)12,000 rpm 离心 2 min,倒掉废液。将吸附柱 CR3 置于室温放置 10 分钟,以
彻底晾干吸附材料中残余的漂洗液。
9)将吸附柱 CR3 转入一个新的 RNase-Free 离心管中,加入 30-100
μ
l
RNase-Free ddH2O 室温放置 2 min,12,000 rpm 离心 2 min,得到 RNA 溶液。
10)RNA 鉴定分析(浓度,纯度)。2. 采用 TaRa PrimeScript RT Master Mix 进行 cDNA 链合成:
1)按下列组分配制 RT 反应液
5X PrimeScrip Mix 2
μ
l
Total RNA (50
μ
M) -- ul
RNase free H2O up to 10
μ
l
2)反转录反应条件如下
37℃ 15min (反转录反应)
85℃ 5sec (反转录酶失活反应)
五、实验注意事项
1. 严格控制外源性 RNA 酶的污染:外源性的 RNA 酶存在于操作人员的手汗、唾
液等,也可存在于灰尘中,造成器械、玻璃制品、塑料制品、电泳槽、研究人
员的手及各种试剂的污染。
2. 大限度地抑制内源性的 RNA 酶:而各种组织和细胞中则含有大量内源性的
RNA 酶。
3. 戴手套。因为皮肤经常带有细菌,可能导致 RNase 污染。
4. 使用无 RNase 的塑料制品和枪头避免交叉污染。
5. RNA 在裂解液 RL 中时不会被 RNase 降解。但提取后继续处理过程中应使用不
含 RNase 的塑料和玻璃器皿。
6. 配制溶液应使用无 RNase 的水。
实验三 real-time PCR 测端粒酶 mRNA 表达
一、实验目的
1.掌握 RT-PCR 基因扩增的原理和过程
2.了解端粒酶的结构与功能
二、实验原理:
1. 实时定量 PCR 技术:
利用荧光信号的变化实时检测 PCR 扩增反应中每一个循环扩增产物量的变化,
通过 Ct 值和标准曲线的关系对起始模板进行定量分析。
Ct 值的定义:PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。
Xn = X0 × (
1+En)Ct
lg Xt =lg X0 + Ct lg(
1+En)
Ct = -k lg X0 + b
X0 :起始模板数量
En:扩增效率
Xt:荧光扩增信号达到阈值时扩增产物的量,在阈值设定以后,它是一个常数
Log 模板起始浓度与 Ct 值呈线性关系。
模板 DNA 量越多,荧光达到阈值的循环数越少,即 Ct 值越小。
2.常用荧光标记方法:
特异性荧光标记 TaqMan Probe
非特异性荧光标记 SYBR Green I:是一种结合于 dsDNA 双螺旋小沟区域
的具有绿激发波长的染料。
问题点:
SYBR Green I 与双链 DNA 进行结合后散发荧光,因此如果反应体系
中有非特异性扩增或引物二聚体的产生,也将同时被检测,从而可能导致检测
结果不准确。
关键点:
设计合适引物,非特异性扩增!
端粒酶:通过识别并结合富含胞嘧啶 C 的端粒末端,以自身 RNA 为模板, TER
催化,合成端粒的 DNA 重复序列,从而阻止随着 DNA 复制和细胞分裂所
造成的端粒的不断缩短, 进而稳定染体的长度,避免细胞因端粒丢失
所导致的凋亡。因此,端粒酶在细胞永生化和肿瘤发生中起着重要作用。
相对定量分析——2 -
∆ ∆
Ct 法
三、试剂与仪器:
1. LightCycler 480 SYBR Green I Master
2. LightCycler 8-Tube Strips (white)
3. 无菌,无RNA酶离心管
4. 无菌,无RNA酶枪头
四、实验操作:
1. 加样:试剂 体积
模板(稀释 5 倍) 2µl
Master mix,2×conc. 10µl
正向引物 1µl
反向引物 1µl
水,PCR 级别 6µl
总体积 20µl
2.PCR 程序设定:SYBR Green I 选择“SYBR Green I /HRM Dye”,反应总体积
20 ul。
3.设定每个程序中对应步骤的①温度(Target)、②信号获取模式(Acquisition
Mode)及 ③时间(Hold)。
4.设定完成后,放入样板,窗口右下方的“Start Run” 按钮将由灰变为蓝,
此时即可点击之,开始运行实验。
5.运行完毕后,点击界面左侧“Sample Editor”,对样本详细信息进行编辑。
6.点击界面左边的“Analysis”,进入分析界面,进行 Tm 分析 (Tm Calling) 分
析和相对定量 (Relative Quantification) 分析
五、结果分析
2 - △△Ct 法:假设目的基因和参照基因扩增效率都接近 100%
△Ct(第 n 组)=16-17=-1 △Ct(组)=18-17.4=0.6
△△Ct=△Ct(第 n 组)-△Ct(组)=-1-0.6=-1.6
比率(癌细胞组/正常细胞组)=2-△△Ct=2-(-1.6) = 3
所以 TERT 基因在癌细胞的表达水平是正常细胞的 3 倍。
要求实验报告分析出自己组对比组的结果
六、实验注意事项
1、能标准的使用微量移液器,使重复样本得到相同的结果。2、学会分析溶解曲线,得到循环 CT 值后学会如何分析结果。
实验四 蛋白分子量测定——SDS-聚丙烯酰胺凝胶电泳
一、实验目的
1.
学
SDS-PAGE
测定蛋白质分子量的基本原理
2.
掌握
SDS-PAGE
垂直板电泳的操作方法
二、实验原理
聚丙烯酰胺凝胶(
PAGE
)是由丙烯酰胺(
Acr
)和交联试剂
N,N
’
-
甲叉双丙
烯酰胺
(Bis)
在有引发剂(如过硫酸铵)和增速剂(如
N,N,N
’
,N
’
-
四甲基乙二胺,
TEMED
)的情况下聚合而成的。在一定浓度范围内,改变聚合体系中
Acr
和
Bis
的比例,可得到不同网眼大小的凝胶,由于凝胶的三维网状结构,对在凝胶中泳
动的不同分子量的质点有着选择和阻碍,因此具有分子筛效应,决定着聚丙烯酰
胺凝胶的有效分离笵围。
SDS-
聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进了十二烷基硫酸
钠(
sodium dodecyl sulfate
,简称
SDS
),
SDS
是一种阴离子去污剂,它能破坏
蛋白质分子之间以及与其他物质分子之间的非共价键,使蛋白质变性而改变原有
的空间构象。是在强还原剂,如巯基乙醇存在下,由于蛋白质分子内的二硫
键被还原剂打开,不易再氧化,这就了蛋白质分子与
SDS
充分结合,形成
带负电荷的
SDS-
蛋白质复合物。
带负电荷的蛋白质
-SDS
复合物由于结合了大量的
SDS
,使蛋白质丧失了原有的电荷状态,形成了仅保持原有分子大小为特征的负离子团块,从而降低或消除
了各种蛋白质分子之间天然的电荷差异。
蛋白质
-SDS
复合物在水溶液中的形状,近似于雪茄烟形的长椭圆棒。不同蛋
白质的
SDS
复合物的短轴长度都一样,约为
1.8nm
,而长轴则随蛋白质的分子
量成正比变化。这样的蛋白质
-SDS
复合物在凝胶中的迁移率,受蛋白质原
有电荷和形状的影响,而只是椭圆棒的长度,也就是蛋白质分子量的函数。
lgMw = -bRm + K
Mw
:蛋白质的分子量;
Rm
:相对迁移率
b
: 斜率
;
K
:截距
当条件一定时,
b
,
K
均为常数,即此时
lgMw
与
Rm
的关系为线性关系,
如以
lgMw
对
mR
作图,应得到一条直线,如上图。
若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可获得一条标
准曲线。未知蛋白质的相同条件下进行电泳,根据它的电泳迁移率即可在标准曲
线上求得分子量。
三、实验试剂及仪器
1.
实验试剂
(
1
)
30%
丙烯酰胺(
Acr
):
Acr/
甲叉双丙烯酰胺
(Bis)=29:1
(
2
)
10%SDS
(十二烷基磺酸钠)
(
3
)
10%
过硫酸铵
(AP)
(
4
)
TEMED
(四甲基乙二胺)
(
5
)
2
×上样缓冲液:
10%SDS
(
4ml
)
+
巯基乙醇(
1ml
)
+0.2%
溴酚蓝(
2ml +
甘油
2ml +1M pH6.8Tris-HCl
(
1ml
)
(
6
) 浓缩胶缓冲液(
1M Tris-Cl
缓冲液
pH6.8
)
(
7
) 分离胶缓冲液(
1.5M Tris-Cl
缓冲液
pH8.8
)
(
8
) 电泳缓冲液
: (SDS 20g
,
Tris 60g,
甘氨酸
282.2g, pH8.3
)加蒸馏水使其溶
解后定容至
2L
。
(
9
) 固定液:乙醇
500ml
,冰乙酸
100ml
混匀,
(
10
) 染液:考马斯亮蓝
R250 1.25g
,甲醇
225ml
,冰乙酸
50ml
,蒸馏水定
溶至
1L
。
(
11
) 脱液:冰乙酸
80ml
,乙醇
250ml
,加蒸馏水定容至
1L
。
2.
实验仪器
(
1
)垂直板电泳装置、电泳仪、制胶架
(
2
)移液枪、移液管
(
3
) 烧杯、培养皿
(
4
) 离心机
四、实验步骤
1.
装板
将垂直板型电泳装置内的板状凝胶模子取出,将玻璃片洗净、凉干、嵌入
凹槽中,形成一个“夹心”凝胶腔,
把装好的凝胶腔置于仰放的电上槽。将电泳槽、凝胶模子串成一体的垂
直板型电泳装置,垂直放置在水平台面上,灌注胶液。
2.
分离胶的配制(
12%
)
试剂
体积
H2O
3.35
(
ml
)
凝胶贮备液
2.5
(
ml
)
分离胶缓冲液
(pH8.8)
2.5
(
ml
)
10% SDS
0.1
(
ml
)
TEMED
5
(
ul
)
10%
过硫酸铵
50
(
ul
)
总体积
10
(
ml
)
3.
分离胶的灌注和聚合
用移液管将所配制的分离胶缓冲液沿着凝胶腔的长玻璃板的内面缓缓注
入,留出梳齿的齿高加
1cm
的空间以便灌注浓缩胶,然后加满蒸馏水。待分离胶凝固后,倒出蒸馏水,用滤纸吸干。
4.
浓缩胶的配制(
5%
)
试剂
体积
H2O
2.92
(
ml
)
凝胶贮备液
0.8
(
ml
)
分离胶缓冲液
(pH6.8)
1.25
(
ml
)
10% SDS
0.05
(
ml
)
TEMED
5
(
ul
)
10%
过硫酸铵
25
(
ul
)
总体积
5.05
(
ml
)
5.
浓缩胶的灌注和聚合
用移液管将所配制的浓缩胶缓冲液沿着凝胶腔的长玻璃板的内面缓缓
加入,将梳子插入胶液顶部,放置室温下待其聚合。
6.
样品的准备
在低分子量标准蛋白质和待测样品中分别加入适量还原缓冲液,放入沸水
中加热
3-5min
,取出冷至室温。
7.
加样
加入电缓冲液,小心拔出梳齿,用微量注射器向凝胶梳孔内加样。同时加
入
Marker
。
8.
电泳
上槽接负,下槽接正,打开直流电源,刚开始时,电压控制在不高于
100V
,
电流恒定在
10mA
;样品进入分离胶后,电压控制在不高于
140V
,电流恒定在
20mA
。待指示剂染料(溴酚蓝)迁移至凝胶下沿
1.0cm
处停止电泳。
9.
染和脱
电泳结束后,撬开玻璃板, 小心将胶取出,放入一大培养皿中。
染:加入染液,置于摇床上染
2h
。
脱:染完毕,倒出染液,加入脱液,置于摇床上脱,数小时更换
一次脱液,直至背景清晰,拍照。
10.
相对分子质量的计算
量出分离胶顶端距溴酚蓝间的距离
(cm)
以及各蛋白质样品区带中心与分离
胶顶端的距离
(cm)
,按下式计算相对迁移率
:
蛋白质样品距分离胶顶端迁移距离
(cm)
Rm =
溴酚蓝区带中心距分离胶顶端距离
(cm)
以标准蛋白质分子量的对数对相对迁移率作图,得到标准曲线,根据待测样
品相对迁移率,从标准曲线上计算出其分子量。
五
、
实验结果与分析
1.
根据凝胶结果,依据标准蛋白条带,判断各个蛋白质样品区带大概分子量。
2.
测量样品中各种蛋白质分子的相对迁移率
Rm
值,然后根据标准曲线计算
出各自分子量
3.
对实验操作及结果中不足之处进行分析。
六、实验注意事项
1
.丙烯酰胺和双丙烯酰胺具有很强的神经毒性并容易吸附于皮肤,操作时应免
避沾在脸、手等皮肤上。好戴一次性塑料手套操作。
2
.
10%
过硫酸铵现用现配,
4
℃冰箱贮存不超过
48
小时。
3
.灌制凝胶时,应避免产生汽泡,因为汽泡会影响电泳分离效果。
4.
蛋白加样量要合适。加样量太少,条带不清晰
;
加样量太多则泳道超载,条带
过宽而重叠,甚至覆盖至相邻泳道。
5
.刚灌注分离胶混合溶液后,应在分离胶液面上加
1-2cm
高的水层,以阻隔空
气。胶液面上加水层时要小心,缓缓叠加,以免冲坏凝胶的胶面。
七、思考题
1.
在不连续体系
SDS-PAGE
中,当分离胶加完后,需在其上加一层水,为什么
?
2.
电缓冲液中甘氨酸的作用
?
3.
在不连续体系
SDS-PAGE
中,分离胶与浓缩胶中均含有
TEMED
和
AP
,试述
其作用
?
4.
样品液为何在加样前需在沸水中加热几分钟
?
实验五 糖酵解中间产物的鉴定
一、实验目的
1
.掌握糖酵解中间产物的鉴定方法和原理。
2
.熟悉通过酶的抑制作用调节代谢途径。
3
.了解使中间产物堆积的方法在研究中间代谢中的意义。
二、 实验原理
在细胞质中,一分子葡萄糖通过一系列反应转化为两分子丙酮酸,并伴随着
ATP
生成的一系列反应是有机体获得化学能的原始的途径,也是原核生物和真
核生物糖类物质分解代谢的共同途径。利用碘乙酸对糖酵解过程中的
3-
磷酸甘油
醛脱氢酶特异地且不可逆地抑制作用,使
3-
磷酸甘油醛向前变化而积累。硫
酸肼作为稳定剂,用来保护
3-
磷酸苷油醛使其不自发分解。然后用
2,4-
二硝基苯
肼与
3-
磷酸甘油醛在碱性条件下形成
2,4-
二硝基苯肼
-
丙糖的棕复合物,其棕
程度与
3-
磷酸甘油醛含量成正比。从而明糖的分解代谢过程中,含有
3-
磷
酸甘油醛的中间产物。
三、实验试剂及器材
1.实验材料
新鲜酵母
2. 仪器:
离心管、移液枪;恒温水浴;离心机
3.试剂:
1
)
2,4-
二硝基苯肼
: 0.1 g 2,4-
二硝基苯肼溶于水
100 ml 2 mol/L
盐酸溶液中,储
于棕瓶中备用。
2
)
0.56 mol/L
硫酸肼溶液
:
称取
7.28 g
硫酸肼溶于
50 ml
水中,这时不会溶
解,当加入
NaOH
使
pH
值达
7.4
时则溶解。
3
)
5%
葡萄糖溶液。
4
)
10%
三氯乙酸溶液。
5
)
75 mol/L NaOH
溶液。
6
)
0.002 mol/L
碘乙酸溶液。
四、实验步骤
1.取小烧杯 3 支,编号,分别加入新鲜酵母 0.3 g,并按表 1 分别加入各试剂,
混匀。
2.将各杯混合物分别放入 37℃水浴中保温 1.0 小时,观察发酵管产生气泡的量
有何不同。
3.在 2 号和 3 号杯中按表 2 补加各试剂,摇匀后放 5-10 分钟
4. 将三支离心管中的上清液分别进行离心或者过滤,3000rpm, 3min。
5.取 3 支试管,分别加入上述滤液 0.5 ml,并按表 3 加入试剂和处理。
(取上清液 0.5 ml,加入 0.75 mol/L NaOH 0.5 ml,混匀后在 37℃水浴保温
10 分钟,然后分别向上述试管中加入 0.5 ml 2,4-二硝基苯肼,混匀后在 37℃
水浴保温 10 分钟,然后加入 0.75 mol/L NaOH 3.5 ml,观察实验结果。)
表 1 糖酵解中间产物的鉴定——发酵产生气泡观察
编号
5%
葡萄糖溶
液 (
ml
)
10%
三氯乙
酸(
ml
)
碘乙酸
(
ml
)
硫酸肼
(
ml
)
发泡量
1
10
(
ml
)
2
1
1
2
10
(
ml
)
0
1
1
3
10
(
ml
)
0
0
0
表 2
补加试剂
编号
10%
三氯乙酸
(
ml
)
碘乙酸
(
ml
)
硫酸肼
(
ml
)
发泡量
2
2
0
0
3
2
1
1
表 3 糖酵解中间产物的鉴定——二硝基苯肼反应
五、结果与分析
实验中哪一发酵管生成的气泡多?哪一管生成的颜深? 为什么?
描述观察到得实验现象并对实验结果加以分析。包括保温后的气泡量及的
显效果。
六、注意事项
1. 本实验虽为定性鉴定,但量取体积等人要求相对准确 ;
2. 注意试剂的添加顺序,编号不要弄混 ;
3. 每步反应前注意要充分混匀 。
七、思考与讨论
1. 实验鉴定的是哪种中间产物?
2. 实验中三氯乙酸、碘乙酸、硫酸肼三种试剂分别起什么作用?
3. 实验中的气泡是什么气体? 如何产生的?
编号
滤液
(ml)
0.75 mol/L
NaOH(ml)
摇
匀
,
室
温
放
置
5
分
钟
2,4-二硝基
苯肼 (ml)
摇
匀
,
室
温
放
置
5
分
钟
0.75 mol/L
NaOH(ml)
1
0.5
0.5
0.5
3.5
2
0.5
0.5
0.5
3.5
3
0.5
0.5
0.5
3.5
实验六 荧光分光光度法测定维生素 B2 的含量
一、实验目的
1.学荧光分光光度法测定多维葡萄糖粉中维生素 B2 的分析原理;
2.掌握荧光分光光度计的使用方法;
3.了解分子荧光产生的机理.
二、 实验原理
维生素 B2 易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光
照易分解,对热稳定。 维生素 B2 在碱性溶液中经光线照射会发生分解而转化为
光黄素,光黄素的荧光比核黄素的荧光强的多,故测 VB2 的荧光时溶液要控制在
酸性范围内,且在避光条件下进行。
核黄素
(V
B2
)
光黄素
多维葡萄糖中含有维生素 B1、B2、C、D2 及葡萄糖,其中维生素 C 和葡萄糖
在水溶液中不发荧光,维生素 B1 本身无荧光,在碱性溶液中用铁氰化钾氧化后
才产生荧光,维生素 D2 用二氯乙酸处理后才有荧光,他们都不干扰维生素 B2
的测定。
维生素 B2 溶液在 430~440 nm 蓝光的照射下,发出绿荧光,其峰值波长为
545 nm。VB2 的荧光在 pH=6~7 时强,在 pH=11 时消失。
三、实验试剂及器材
1. 试剂:
100
μ
g/mlVB2 标准溶液(4%冰醋酸配制,置阴暗处保存);冰乙酸;
多维葡萄糖粉试样
2. 器材:
岛津 RF5301PC 荧光分光光度计 ;微量移液器 ;容量瓶;石英比皿
四、实验步骤
1、打开氙灯,再打开主机,然后打开计算机启动工作站并初始化仪器。
2、仪器初始化完毕后,在工作界面上选择测量项目
设置适当的仪器参数:激发波长 Ex= 435 nm,发射波长 Em=545nm。
3、标准曲线测定,样品测定。
4、制作标准曲线,由标准曲线计算样品中维生素 B2 的含量。
5、 退出主程序,关闭计算机,先关主机,关氙灯。
五、结果与分析
1、 原始数据:标准曲线以及样本的荧光值。
测量 1-6 号标准曲线荧光值:VB2 的含量:0.0ug/ml、0.1ug/ml、0.2ug/ml、
0.3ug/ml、0.4ug/ml、0.5ug/ml。
测量 7 号样品荧光值
2、绘制出标准曲线:要求规范作图
铅笔作图;
横、纵坐标名称及单位;
日期、作者 、曲线名称;
曲线上体现出待测样品的荧光值及浓度值。
3、计算:样品中维生素 B2 的量。
要求: 写出公式、代入数据、写出结果。
实验八 pH 值和温度对酶促反应速度的影响
一、实验目的
1
.了解不同
pH
和温度对淀粉水解和唾液淀粉酶活性的影响。
2
.学会测定酶适
pH
和温度的方法。
二、实验原理
酶都是蛋白质,它的活性受环境 pH 的影响为显著。通常各种酶只有在一
定的 pH 范围内才表现它的活性,一种酶表现其高活性时 pH 的值,称为该酶的适 pH。本实验以唾液淀粉酶在不同的温度和 pH 下对淀粉的作用为例观察温度
和 pH 对酶活性的影响,淀粉的水解程度用其与碘液的呈反应加以区别。
三、实验试剂及器材
1. 试剂:
淀粉;碘;碘化钾;磷酸氢二钠;柠檬酸
2. 器材:
试管 吸量管 试管架 吸耳球
四、实验步骤
1. 溶液配制:
0.5%淀粉溶液(含 0.3%氯化钠)(新鲜配置),碘-碘化钾溶液(4 g 碘及碘化
钾 6 g 溶于 100 ml 蒸馏水中,于棕瓶中保存),0.2 mol/L 磷酸氢二钠溶液,
0.1 mol/L 柠檬酸溶液。
2. 样品收集
每人取一个干净的小烧杯,先用自来水漱口,将口腔内的食物残渣清除干净,
然后去蒸馏水约 20ml 含入口中,做咀嚼动作 3-4min,以分泌较多的唾液。将
口腔中的蒸馏水吐入干净的小烧杯中,此即为稀释的唾液淀粉酶液。
3. pH 对酶活性的影响
(
1)缓冲液的配制
编号
0.2mol/L
磷酸氢二纳(
ml
)
0.1mol/L
柠檬酸(
ml
)
缓冲液(
ml
)
1
5.15
4.85
5.0
2
6.16
3.39
6.2
3
7.72
2.28
6.8
4
9.08
0.92
7.4
5
9.72
0.28
8.0
(
2)底物的准备
6 支干燥的试管编号,依次加入不同 pH 的缓冲液各 3 ml,第 6 号试管与第
3 号相同。再向每个试管中添加 0.5%淀粉溶液 2 ml,摇匀。
(
3)酶促反应时间测定
向第 6 号试管加入稀释 100 倍的唾液 2 ml,摇匀后放入 37 ℃恒温水浴中保
温。每分钟取 1 滴混合液于离心管中或反应板上,加 1 滴碘化钾-碘溶液,呈橙
黄时取出试管,记录时间。
(
4)适 pH 测定
以 1 min 的间隔,依次向 1~5 号试管中加入稀释 200 倍的唾液 2 ml,摇匀,
同样以 1 min 间隔,将 5 只试管放入 37 ℃恒温水浴中保温,反应至所需时间。
依次取出,立即加入碘化钾-碘液 2 滴,充分摇匀。观察颜,可看出不同 pH
值时淀粉被水解的程度,不同 pH 值对唾液淀粉酶活性的影响,并确定其适 pH。
4. 温度对酶活性的影响
(1)取三支试管按下表操作:
试剂
管号
1
2
3
1%
淀粉溶液(
ml
)
1
1
1
放置条件
沸水浴
37
℃
冰浴
稀释唾液(滴)
4
4
4
分别按上述条件继续放置 10 min。
(2) 从三支试管中取出溶液 1 滴于离心管中或反应板上,加上 1 滴碘液,观察呈
现象,记录结果并解释其原因。
五、注意事项
1. 各管反应及操作应在同一水平;
2. 每管间隔相同的时间加样和终止反应以各管反应时间相同。
附件:生化实验.pdf