济南长期回收废钼企业排名
钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。
一、11大钼矿企业,5家来自中国
综合国内外市场,钼精矿行业是一个集中度较高的行业,范围内前11大企业控制着市场72%的供应量,其中有5家企业来自中国:
分别为陕西金堆城钼业、洛阳钼业、中铁伊春鸣矿业、中国黄金满洲里乌山矿业、华夏建龙集团河北丰宁鑫源矿业。这就意味着我国控制了钼的命脉。
二、十大钼矿,两个在中国
根据美国地质调查数据,钼资源储量约为1100万吨,中国是世界上钼资源为的国家,钼资源储量为430万吨;中国钼矿资源量占40%,与稀土等矿产被称为中国六大优势矿种。
1、亚洲大——金寨县沙坪沟钼矿
2011年7月,安徽省地质勘探宣布,在金寨县沙坪沟发现巨大钼矿,预计331 332 333类钼矿石量16.3亿吨,钼金属量233.8万吨,平均品位0.143%,伴生矿产硫矿矿石量4.86亿吨、元素量1054万吨,平均品位2.16%;为安徽省50年来发现的唯一特大型金属矿床,国家特大型矿山,目前是亚洲大、世界第二大储量的钼矿床,并且钼品位在也处于领先位置。潜在经济价值达6000亿元。
2、巨型矿床——黑龙江大兴安岭岔路口钼矿
黑龙江大兴安岭岔路口钼矿是中国近年来发现巨型钼矿床,由云南驰宏锌锗和北京隆东投资两家民营企业持股,目前已经开展矿山建设,总建设投资预计超过100亿元。
岔路口矿的资源量与沙坪沟相当,但其缺点是品位过低,其中具备工业开发价值的资源量约为176万吨左右。
三、钼资源分布
1、分布
钼矿资源大多集中在南北美洲、亚洲的中国和独联体国家,其次是东欧,而非洲、大洋洲和大多数亚洲国家钼资源很少,钼消耗量较大的日本和西欧基本无分布。
据美国地质调查统计,2016年钼矿储量1500万吨(金属量,下同),其中中国840万吨,占56%;美国270万吨,占18%;智利180万吨,占12%;三国合计占总储量的86%。此外秘鲁、加拿大、俄罗斯钼矿储量均大于20万吨,上述六国共占92%。
2、中国钼分布
我国是世界上钼矿资源为的国家之一,根据国土发布的数据,截止2014年,我国钼矿查明资源储量达到2726.8万吨(金属含量)。此外,自2011年至今,我国新发现安徽沙坪沟等三个200万吨级的钼矿,我国作为世界钼矿资源大国的资源基础更加稳固。
我国钼矿分布就大区来看,中南占全国钼总储量的35.7%,居首位;随后是东北19.5%、西北13.9%、华北12%,西南仅占4%。就各省(区)来看,河南多,占全国钼矿总储量30.1%,其次陕西占13.6%、吉林占13%;另外储量较多的省(区)还有:山东占6.7%、河北占4%、辽宁占3.7%、内蒙古占3.6%。以上8个省(区)合计储量占全国钼矿总储量的81.1%,其中前三位共占56.5%。
四、我国钼业之都
1、陕西渭南华县
该地区钼资源,已探明钼资源矿石储量为14亿吨,钼金属储量为128万吨,居世界前列,是世界六大钼矿床之一。中国矿业联合会于2006年授予了华县“中国钼业之都”的称号
2、金寨钼矿
沙坪沟巨型“斑岩型”钼矿位于金寨县关庙乡,距离金寨县城(梅山)50千米,是我省建国以来发现的大金属矿床。全矿床共估算矿石量12.75亿吨,钼矿探明钼金属量220万吨以上,储量居亚洲,世界第二
3、温泉钼矿
武山温泉钼矿位于温泉乡及小南岔。专家分析认为,温泉钼矿床的资源潜力很大,前景很好。钼矿2009年已施工的20个钻孔都见到了高品位的厚大矿体,地质勘查完成设计工作量后可获得20万吨钼矿资源量。2004年底获333级钼资源量1017万吨,具备大型-超大型钼矿的勘查潜力。
1 编制目的
为贯彻落实《中华人民共和国土壤污染防治法》,指导和规范土壤污染重点监管单位开展土壤环境自行监测工作,制定本指南。
2 适用范围
本指南适用于指导土壤污染重点监管单位中工矿企业开展土壤及地下水自行监测工作,生活垃圾填埋场等其他行业按照GB16889等有关标准执行。重点单位的划分以陕西省生态发布的土壤污染重点监管单位名录为准。
3 规范性引用文件
本指南内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本指南。
GB 36600 土壤环境质量 建设用地土壤污染风险管控标准(试行)
GB16889 生活垃圾填埋场污染控制标准
GB 50021 岩土工程勘察规范
GB/T 14848 地下水质量标准
GB/T 4754 国民经济行业分类
HJ 682 建设用地土壤污染风险管控和修复术语
HJ 25.1 建设用地土壤污染状况调查技术导则
HJ 25.2 建设用地土壤污染风险管控和修复监测技术导则
HJ 25.3 建设用地土壤污染风险评估技术导则
HJ 819 排污单位自行监测技术指南总则
HJ 164 地下水环境监测技术规范
HJ/T 166 土壤环境监测技术规范
4 术语和定义
下列术语和定义适用于本指南。
4.1 土壤 soil
土壤是指由矿物质、有机质、水、空气及生物有机体组成的地球陆地表面的疏松层。
4.2 地下水 groundwater
地下水是指以各种形式埋藏在地壳空隙中的水,含包气带和饱和带中的水。
4.3 自行监测 self-monitoring
指排污单位为掌握本单位的污染物排放状况及其对周边环境质量的影响等情况,按照相关法律法规和技术规范,组织开展的环境监测活动。
4.4建设用地land for construction
建设用地是指建造建筑物、构筑物的土地,包括城乡住宅和公共设施用地、工矿用地、交通水利设施用地、旅游用地、军事设施用地等。4.5 重点区域 suspected areas of contamination
具有土壤或地下水污染隐患的区域,如有毒有害物质的生产区,原材料或固体废物的堆存区、储放区和转运区等。
4.6 重点设施 key facilities
具有土壤或地下水污染隐患的设施,如涉及贮存或运输有毒有害物质的罐槽、管线等。
4.7 关注污染物 contaminants of concern
根据地块污染特征、相关标准规范要求和地块利益相关方意见,确定需要进行土壤污染状况调查和土壤污染风险评估的污染物。5 自行监测的一般要求
5.1 制定监测方案
重点监管单位应识别本单位存在土壤及地下水污染隐患的区域或设施并确定其对应的关注污染物,制定自行监测方案。监测方案应包括下列内容:单位基本情况、监测点位及示意图、监测、执行标准及其限值、监测频次、采样和样品保存方法、监测分析方法、质量与质量控制等(监测方案大纲见附录A)。
5.2 开展自行监测
重点监管单位应根据本指南要求,依据自行监测方案,自行或委托第三方开展土壤和地下水自行监测工作。
原则上对于地下水埋藏条件不适宜开展地下水监测的单位或者同时满足下述条件的单位可暂不开展地下水监测:
(1)含水层埋深大于15 m;
(2)关注污染物中不存在易迁移的污染物(如六价铬、氯代烃、石油烃、苯系物等);
(3)土层参照《岩土工程勘察规范》(GB 50021)分类方法归类为粉土及黏性土等低渗透性土壤;
(4)企业周边1 km范围内无饮用水源地保护区、补给区等地下水敏感区域。
5.3 建设并维护监测井(点)
重点监管单位应按照相关监测规范要求建设满足开展监测所需要的监测井(点),并进行维护。
5.4 记录、保存监测数据,依法公开监测结果
重点监管单位应记录和保存监测数据、分析监测结果,编制年度监测报告,并依法向社会公开监测结果。
6 监测方案制定
6.1 重点设施及区域识别
6.1.1 资料搜集
搜集的资料主要包括单位基本信息、单位内各区域及设施信息、迁移途径信息、敏感受体信息、地块已有的环境调查与监测信息等(具体见表6-1)。
表6-1 应搜集的资料清单
6.1.2 重点设施及区域识别
对本章6.1.1节调查过程和结果进行分析、总结和评价。根据各设施信息、关注污染物类型、污染物在土壤和地下水中的迁移转化途径等,识别单位内部存在土壤及地下水污染隐患的重点设施,在单位平面布置图中标记,按照附录B所示格式填写信息记录表,记录重点设施相关信息。
重点设施数量较多的单位可根据重点设施在单位的分布情况,将排放污染物类似且相距较近的多个设施,合并作为一个重点区域,在单位平面布置图中标记。
具有土壤或地下水污染隐患的设施包括但不限于:
1)涉及有毒有害物质的生产区或生产设施;
2)涉及有毒有害物质的原辅材料、产品、固体废物等的贮存或堆放区;
3)涉及有毒有害物质的原辅材料、产品、固体废物等的转运、传送或装卸区;
4)贮存或运输有毒有害物质的各类罐槽或管线;
5)三废(废气、废水、固体废物)处理处置或排放区。
6.2 监测点位布设
6.2.1 点位布设原则
重点监管单位自行监测点/监测井应布设在重点设施周边并尽量接近重点设施。重点设施数量较多的单位可根据重点区域内部重点设施的分布情况,统筹规划重点区域内部自行监测点/监测井的布设,布设位置应尽量接近重点区域内污染隐患较大的重点设施。
监测点/监测井的布设应遵循不影响单位正常生产、不造成隐患与二次污染且利于监测的原则。
纳入重点行业企业用地调查的单位点位布设可按重点行业企业用地调查确定的监测点位开展监测。
6.2.2 对照监测点
应在重点监管单位外部区域或单位内远离各重点设施(区域)处布设至少1个土壤及地下水对照点。对照点应不受单位生产过程影响且可以代表单位所在区域的土壤及地下水本底值。
土壤监测对照点应设置于重点设施(区域)污染物迁移的上游,原则上在重点监管单位边界30m范围内布设。
地下水对照点应设置在重点设施(区域)地下水径流的上游区域。地下水对照点监测井应与污染物监测井设置在同一含水层。
6.2.3 土壤监测点位布设
重点监管单位自行监测遵循以下原则确定土壤监测点的数量、位置及深度:
(1)点位数量及位置
每个重点设施周边应至少布设1-2个土壤监测点,每个重点区域周边至少布设2-3个土壤监测点。监测点具体数量可根据待监测区域大小等实际情况进行适当调整。
(2)采样深度
土壤监测应以表层土壤(0-20 cm)为重点采样层,开展采样工作。存在液体污染物的重点设施(区域)周边点位应采集不同深度的土壤样品。
6.2.4 地下水监测井的布设
重点监管单位自行监测应设置地下水监测井开展地下水监测工作,并按照《地下水环境监测技术规范》(HJ 164)中4.3.3要求确定监测井数量和位置。单位内或邻近区域内现有的地下水监测井,如果符合本指南要求,可以作为地下水对照井或污染物监测井。
采样深度按以下原则确定:
监测井在垂直方向的深度应充分考虑季节性的水位波动,并根据污染物性质、含水层厚度以及地层情况确定。
1)污染物性质
① 当关注污染物为低密度污染物时,监测井进水口应穿过潜水面以能够采集到含水层顶部水样;
② 当关注污染物为高密度污染物时,监测井进水口应设在隔水层,含水层的底部或者附近;
③ 如果低密度和高密度污染物同时存在,则设置监测井时应考虑在不同深度采样的需求。
2)含水层厚度
① 厚度小于6 m的含水层,可不分层采样;
② 厚度大于6 m的含水层,原则上应分上中下三层进行采样。
3)地层情况
地下水监测以浅层地下水为主,如浅层地下水已被污染且下游存在地下水饮用水源地,需增加主开采层的监测点。
6.3 监测项目
重点监管单位应根据本指南6.1“重点区域及设施识别”结果,参照附录C中单位所属行业类型及关注污染物,选择确定每个重点区域或设施需监测的关注污染物类别及项目(需测试每个重点设施或重点区域涉及的关注污染物,不同设施或区域的分析测试项目可以不同)。本指南未提及其所属行业的单位,应根据单位具体情况,在附表C-1“常见关注污染物类别及项目”中自行选择分析测试项目。原则上每个重点区域或设施应监测的污染物项目不少于2项。
对于以下项目,重点监管单位应在自行监测方案中说明原因:
1)在附表C-2中有列举,但单位认为不需监测的行业关注污染物项目;
2)在附表C-2中未提及单位所属行业,由单位自行选择的关注污染物项目。
不能说明原因或理由不充分的,应对所列类别污染物进行分析测试。
6.4 监测频次
重点监管单位每年至少开展一次土壤监测和一次地下水监测,地下水监测应在枯水期开展。
6.5 地下水监测井的建设与维护
6.5.1 监测井的建设
重点监管单位地下水采样井应建成长期监测井。监测井的建设过程可参照《地下水环境监测技术规范》(HJ 164)的要求进行。
6.5.2监测井井口的保护
为保护监测井,应建设监测井井口保护装置,包括井口保护筒、井台或井盖等部分。监测井保护装置应坚固耐用、不易被破坏。
井口保护筒宜使用不锈钢材质;井盖需加异型锁;依据井管直径,可采用内径为 24 cm~30 cm、高为50 cm的保护筒,保护筒下部应埋入水泥平台中 10 cm 固定;水泥平台为厚 15 cm,边长 50 cm~100 cm的正方形平台,水泥平台四角须磨圆。
无条件设置水泥平台的监测井可考虑使用与地面水平的井盖式保护装置。
6.5.3 监测井的维护和管理
应指派专人对监测井的设施进行经常性维护,设施一经损坏,及时修复。
地下水监测井每年测量井深一次,当监测井内淤积物淤没滤水管,应及时清淤。
每2年对监测井进行一次透水灵敏度试验。当向井内注入灌水段 1 m 井管容积的水量,水位复原时间超过 15 min 时,应进行洗井。
井口固定点标志和孔口保护帽等发生移位或损坏时,及时修复。
7 样品采集、保存、流转及分析测试技术
7.1 样品采集
7.1.1 土壤样品采集
土壤样品采集方法参照《场地环境监测技术导则》(HJ 25.2)的要求进行。
7.1.2 地下水采样
地下水监测参照《地下水环境监测技术规范》(HJ 164)的要求进行。
7.2 样品保存
样品保存涉及采样现场样品保存、样品暂存保存和样品流转保存要求,样品保存应遵循以下原则进行:
a)土壤样品保存参照《土壤环境监测技术规范》(HJ/T 166)的要求进行;
b)地下水样品保存参照《地下水环境监测技术规范》(HJ 164)的要求进行;
c)监测单位应与检测实验室沟通确定样品保存方法及保存时限要求;
d)现场样品保存。采样现场需配备样品保温箱或其他设施,样品采集后在4 ℃低温保存;
e)样品暂存保存。如果样品采集当天不能将样品寄送至实验室进行检测,样品需在4 ℃低温保存;
f)样品流转保存。样品寄送到实验室的流转过程要求在4 ℃低温保存流转。
7.3 样品流转
7.3.1 装运前核对
在采样小组分工中应明确现场核对负责人,装运前应进行样品清点核对,逐件与采样记录单进行核对,保存核对记录,核对无误后分类装箱。如果样品清点结果与采样记录有不同,应及时查明原因,并进行说明。
样品装运同时需填写样品运送单,明确样品名称、采样时间、样品介质、检测、检测方法、样品寄送人等信息。
7.3.2 样品流转
样品流转运输的基本要求是样品和及时送达。样品应在保存时限内尽快运送至检测实验室。运输过程中要有样品箱并做好适当的减震隔离,严防破损、混淆或沾污。
7.3.3 样品交接
实验室样品接收人员应确认样品的保存条件和保存方式是否符合要求。收样实验室应清点核实样品数量,并在样品交接单上签字确认。
7.4 样品分析测试
样品的分析测试方法应优先选用国家或行业标准分析方法,尚无国家或行业标准分析方法的监测项目,可选用行业统一分析方法或行业规范。
8 质量及质量控制
重点监管单位自行监测过程的质量及质量控制,除应严格按照本指南的技术要求开展工作外,还应严格遵守所使用检测方法及所在实验室的质量控制要求。
重点监管单位利用自有人员、场所和设备自行监测的应按照排污单位自行监测技术指南总则(HJ 819)中“监测质量与质量控制”的要求执行。相应的质控报告应作为样品检测报告的技术附件。
委托开展自行监测的企业,应委托具有中国计量认(CMA)资质的检测机构进行。
9 结果分析及报告
9.1 监测结果分析
重点监管单位应根据本指南要求开展自行监测并对监测结果进行分析,以下情况可说明所监测重点设施或重点区域已存在污染迹象:
a)关注污染物浓度超过相应标准中与其用地性质或所属区域相对应的浓度限值的(各监测对象限值标准按照表9-1执行);
b)关注污染物的监测值与对照点中本底值相比有显著升高的;
c)某一时段内(2年以上)同一关注污染物监测值变化总体呈显著上升趋势的。
表9-1 各监测对象相应限值标准
对于已存在污染迹象的监测结果,应排除以下情况:
a)采样或统计分析误差,此时应重新进行采样或分析;
b)土壤或地下水自然波动导致监测值呈上升趋势的(未超过限值标准);
c)土壤本底值过高或企业外部污染源产生的污染导致的污染物浓度超过限值标准;
对于存在污染迹象的重点设施周边或重点区域,应根据具体情况适当增加监测点位,提高监测频次。
9.2 监测报告编制
重点监管单位应当结合年度自行监测报告,增加土壤及地下水自行监测相关内容。土壤及地下水自行监测报告内容主要包括:
a)重点监管单位自行监测方案;
b)监测结果及分析;
c)单位针对监测结果拟采取的主要措施。
10 监测管理
重点监管单位应按照相关要求对自行监测结果进行信息公开,并对监测结果及信息公开内容的真实性、准确性、完整性负责。
重点监管单位应积配合并接受生态环境行政主管部门的日常监督管理。
11 附则
本指南自发布之日起实施,国家对重点监管单位土壤和地下水环境自行监测相关规定发布后执行国家规定。
废钼回收的技术流程与关键环节
废钼回收的技术流程通常包括预处理、化学提纯和熔炼三个核心环节。预处理阶段通过磁选、破碎和筛分去除杂质;化学提纯采用酸浸或碱浸法溶解钼化合物,再通过沉淀或电解获得纯钼粉;最后经高温熔炼制成钼锭或钼合金。其中,催化剂废料的回收技术要求较高,需采用焙烧-氨浸工艺提取钼酸铵。技术难点在于杂质控制(如镍、铁)和回收率提升,部分企业已引入自动化分选系统和绿色浸出技术以优化效率。
钼作为合金添加剂(占比约79%):合金钢(建筑用钢、汽车等),不锈钢(海洋装备、航空航天等),高速钢和工具钢,铸铁和轧辊。
钼化工制品(占比约13%):润滑剂、催化剂、颜料、微量化肥等。
钼金属及钼基合金(占比约8%):钼丝等,用于灯泡制造、电子管和集成电路等电子工业、模具制造、高温原件、航空航天及核工业等高精尖领域。
2 钼产业链:具备多种中间产品,钼铁为主要消费形式
钼产业链主要分为上游的矿石采选和钼精矿的生产,中游的焙烧和冶炼,以及下游的精深加工。
产品形态主要分为三种:钼炉料产品(钼铁、钼精矿、氧化钼等);钼金属产品(钼粉等);钼化工产品(钼酸铵等)。
3.1 钼供给情况:集中度高的战略金属
矿床角度:钼矿床类型主要有斑岩型、矽卡岩型和石英脉型三种,其中以斑岩型钼矿及铜钼矿为主。其中,斑岩型钼矿床储量大,矿石平均含Mo约0.12%,个别达0.3%;斑岩型铜钼矿床储量次之,矿石平均含Mo约0.01%。
主要钼矿床的分布与斑岩型铜矿床的分布相似,主要集中在环太平洋大陆边缘和岛弧带、新特提斯-喜马拉雅构造-岩浆带和古亚洲洋边缘,这些成矿带大都受特定时期的洋壳俯冲作用影响,产出大量斑岩型钼(铜)矿床。
矿物角度:截至1987年自然界中共发现28种含钼矿物,其中分布广且具工业意义的是辉钼矿(MoS2),其他常见且具工业意义的含钼矿物有钼华(MoO3)、钼钨钙矿(Ca(MoW)O4)、(彩)钼铅矿(PbMoO4)等
3.2 钼储量情况:集中度高的战略金属
从资源属性上看,钼矿资源并不短缺,但时空分布具有较强的专属性。据USGS数据统计,2023年钼储量为1500万吨。
受成矿带分布影响,钼资源储量呈现强的集中性。据USGS数据统计,钼矿资源储量主要集中分布在11个国家,2023年储量前四的国家分别为中国(580万吨),美国(350万吨),秘鲁(150万吨)和智利(140万吨),CR4达81.3%。
中国钼资源也具有很高的聚敛效应,探采比方面呈现显著下降趋势。据《2020—2022年全国矿产资源储量统计表》,中国钼资源集中分布在河南(126万吨),内蒙古(109万吨),西藏(103万吨),黑龙江(66万吨)和吉林(58万吨)等地,CR5达78.4%。另据《中国自然资源统计年鉴》,伴随钼资源开发利用的规模化和集约化,探矿权从2013年的568个下降到2022年的111个,下降80.5%;采矿权从2013年的175个下降到了2022年的79个,下降54.9%。
矿山分布上看,大型矿山分布呈现“三足鼎立”态势。主要大型钼矿床34个,其中:
北美洲的美国、墨西哥和巴拿马-12个
南美洲的智利、秘鲁和阿根廷-11个
亚洲、欧洲和大洋洲—11个
大致成“三分天下”之势,与钼矿资源分布情况基本吻合。同时,国内钼矿以原生钼为主(78%),国外钼资源以伴生钼为主(60%+),因此国外钼资源开发容易受矿山主矿种开采的影响。
超大型钼矿床储量区间100万-200万吨,前十大钼矿中智利Spence铜钼矿位居,钼金属量为276万吨。
从我国钼资源看,十大钼矿中,黑龙江岔路口、安徽金寨沙坪沟、大黑山钼矿分列二、三、九名,钼矿资源储量达247/234/109万吨。河南三道庄钼矿受2021年品位下滑影响,储量下降,目前已不在十大矿山之列。
3.3 及中国钼矿资源产量情况
2020-2021年钼产量下降,2021-2023年间总体平稳。2020-2021年受矿山品位下滑等因素影响,钼产量下滑14%至25.5万吨;2021-2023年钼产量稳定在25-26万吨区间。
中国作为钼矿产量大国,在钼供应体系中起到“定海神针”的作用。
从企业端看,钼生产企业也呈现高度集中性。据各公司年报统计,2023年前10大钼矿生产企业共实现钼矿生产17.02万吨,合计占比达65.5%。
其中,美国自由港麦克莫兰铜金公司作为大钼供应商,2023年实现钼产量3.71万吨,占产量14.3%。金钼股份,墨西哥集团(主体下属南方铜业)2023年均实现2万吨以上钼矿生产。
智利国家铜业受矿端品位下滑等影响,近年来整体产量呈现下滑趋势,2023年实现钼矿产量1.73万吨。
紫金矿业钼产量整体呈现上升趋势,叠加远期大项目落地,有望实现产量端跨越式增长。其中,紫金矿业近三年排产量提升,至2023年已实现0.81万吨钼矿生产。
4.1 及中国钼资源需求情况
钼的终端消费结构中合金钢占比将近一半(41%),其次是不锈钢(22%)和化工(13%),除此之外还包括工具钢、金属铸造、钼金属、镍合金等应用。
化工/石化、石油/天然气和机械工程是主要的钼需求来源,比例分别为16%、15%和13%。其他领域如交通、加工业、电力、建筑也有一定需求。
2022年对钼的总需求量为28.64万吨,同比上升3.34%。钼的前五大消费国/地区为中国、欧洲、美国、日本、独联体。中国长期占据钼大消费国,2022年钼消费量为12.20万吨,占的42.58%。中国钼消费量在近几年持续增长,但增速有所放缓。
4.2 钼资源供需平衡情况
中国是钼供给的主力,2023年产量占的42%。我们预计2023-2026年间中国增产1万吨,海外增产幅度较小,为0.27万吨,钼供给总计增加1.27万吨,增量较少。
中国也是钼的主要消费国,2023年需求占的44%。我们预计2023-2026年间中国钼需求增长1.96万吨,海外需求增长1.17万吨,合计增长3.13万吨,需求增幅远高于供给增幅。
综上,预计钼供需缺口持续拉大,2026年供需缺口预计将达4.43万吨。
5 中国钼进出口情况
我国为传统钼净出口国,2021-2023年维持紧平衡状态。2021年后我国每年维持1-3万吨净出口状态,2024年为净状态。
进出口产品结构有较大差异,也反馈出我国产业链结构特点。从海关总署披露数据看,2021-2024年间我国以原料为主,2024年钼精矿(焙烧)及其他钼精矿占比达到77%;出口则呈现多元化趋势,但主要以炉料产品为主,2024年钼精矿、其他钼制品、钼铁、钼的氧化物分别占比42%、21%、18%、8%。
精矿端,我们对海关总署钼精矿数据进行国别/地区拆分,可以看到2020年之前我国主要依赖智利,其数量可达到总量近50%。但受到矿山品位下滑+产量降低等因素影响,同时考虑到供应国稳定性等因素,2021年起我国积调整采购策略。至2023年,智利+秘鲁为我国钼精矿主要国,单年量各约1-1.5万吨。
精矿出口端,韩国为我国精矿出口大国,单年采购量1-1.5万吨;泰国近两年采购量提升,2023年单年采购量已提升至6000吨。
钼铁出口端,印尼为我国钼铁出口大国,且集中度较高,2023年我国对印尼实现钼铁出口6670吨,占我国钼铁出口总量的79%。
【论文】氧化铝陶瓷的低温钼金属化研究
【论文】提高钼金属回收率探讨与分析
钼金属可行性研究报告
【论文】钼基非金属材料研究进展
金属钼行业研究报告
2014-2018年中国金属钼市场行情态势及投资前景研究报告
2014-2018年中国金属钼行业市场分析及投资方向研究报告
粉冶金属钼的动态再结晶行为研究
济南长期回收废钼企业排名
在化学元素周期表中,钼元素不怎么引人注“钼”,它不像铝、铁那样常见,不如铂、金贵重,更不似氧、氢那般构成了生命的主体。然而,钼元素与人类的关系其实密切,而关于钼元素的方方面面,有一些趣事你可能并不了解。
钼曾被误认为铅
虽然早在14世纪,人们就懂得利用含钼的钢铁来锻造军刀,但那个时候,人们还没有意识到钼元素的存在。原因在于,钼元素在地壳中的含量约为百万分之一,分布也比较分散,属于比较稀有的金属。而且,钼元素往往不是以单质的形式存在,主要与硫结合成化合物,形成辉钼矿,或者偶尔与铅、铜组合,生成铅钼矿和铜钼矿。
16世纪之前,当人们发现辉钼矿的时候,看到它为铅灰,具有金属的光泽,而且辉钼矿多以细微柔软的鳞片状产出,具有挠性(金属或矿物受力发生变形,在作用力失去之后不能恢复原状的性质称为挠性,与“弹性”相对),摸起来还有种油腻的感觉。这和石墨的性质十分相似,所以辉钼矿被误以为是石墨。后来,人们在寻找铅矿石的时候,发现辉钼矿的外观类似于方铅矿,于是,又把钼误认为是铅。所以,人们便用古希腊语中的“molybdos”(意思是“铅”)命名辉钼矿。
直到1778年,德国化学家卡尔·舍勒才首次实,钼辉矿并不是方铅矿,也不是石墨,而是一种新的矿物,含有新的元素。但是,舍勒没有办法将这种新的元素从矿石中分离出来,所以他没能成为个发现钼元素的科学家。有趣的是,舍勒被后世称为“倒霉蛋科学家”,他的坏运气就是从错失钼元素开始的,后来舍勒又从空气可以助燃的实验现象中差点发现了氧气,但却因为迷信燃素说而将发现氧气的机会留给了安托万·拉瓦锡。
在舍勒之后,其他科学家也试图从辉钼矿中提取出新元素,他们让辉钼矿发生氧化反应,然后将粉末放入水中,形成钼酸,但仍然无法从中析出钼金属。终于,在1781年,瑞典化学家彼得·海基尔姆幸运地摘取了科学果实。他将碳粉、亚麻籽油和钼酸混在一起,搅拌成糊状,然后用封闭的坩埚对这一团“浆糊”加热。终于,海基尔姆用这样的“碳还原法”将新的金属从辉钼矿中分离出来,他随即将该金属命名为“钼”。至此,人们才开始了解到钼元素的真面目。
战争使钼名扬天下
1781年,人们开始懂得如何得到金属钼,但此后的100多年里,全世界金属钼的总产量也不超过10吨。由于钼元素易于氧化,且冶炼和加工水平有限,人们似乎还不知道如何将这种金属大规模地应用到工业生产中来。
不过,钼元素适合重工业的优点还是有目共睹的,它硬而坚韧、耐腐蚀、耐高温,熔点仅次于钨、钽,它注定会成为人类重要的工业原料。1891年,法国施耐德公司率先将钼作为合金元素生产出了含钼的钢板,发现其性能,而且钼的密度仅是钨的一半,钼便逐渐取代钨成为炼钢的合金元素。到了20世纪,人类爆发了两场规模空前的世界大战,统计资料显示,在次世界大战中,钼的年产量从数吨瞬间飙升到了100吨,而到了二战时期,又增长至1万吨。为何战争促进了钼的生产?这是因为它太有用了。
我们知道,“陆战”——坦克就是在一战中发明的。初,英国人为了增强坦克的防御力,给坦克安装了75毫米厚的锰钢板,但这种笨重的坦克在战争中表现得并不怎么样。后来,英国人通过试验,将锰钢板换成钼钢板,在不削弱防御力的前提下使得坦克的厚度减了50毫米,结果,更加机动灵活的坦克才得以大显神威。
同样,德国的攻坚——“大贝尔莎”巨炮,也是用钼钢做成的。一战前期,应德国总参谋部的要求,德国工业巨头克虏伯公司研制出了史无前例的重炮,并以古斯塔夫·克虏伯的妻子贝尔莎命名。“大贝尔莎”的口径为420毫米,炮身重43吨,需要200位德国军人花6个星期才能组装完毕。更吓人的是,“大贝尔莎”的重820千克,射程15千米,再坚固的工事也经不住它来这么一发。克虏伯之所以能够研制出威力如此惊人的巨炮,其秘诀就在于使用了材质的钼钢来制作炮身,因为当“大贝尔莎”发射时,只有耐高温的钼能够抵御产生的热量,以免熔化炮身。
到了第二次世界大战,钼元素同样发挥着重要的作用。当时,战场上的坦克莫过于德国的式坦克,其类型包含Ⅰ型和Ⅱ型两种。从1942年服役至1945年德国投降,式坦克一直活跃于战场线,它所向披靡,抵挡。不过,在库尔斯克会战中,苏联人俘获Ⅱ型坦克后对其进行了测试,发现Ⅱ型坦克并不像传说中的那样坚不可摧,虽然它装甲很厚,但是防御效果相对于Ⅰ型并未有较大提升。之所以出现这种状况,其实是由于德军所占领的挪威克纳本钼矿在1943年被盟军轰炸,从而使德军失去了钼的来源。战争初期,德军的Ⅰ型坦克都采用了钼钢,这种钼钢耐腐蚀,在高温条件下仍然具有较高的强度,而Ⅱ型坦克的厚装甲中已经无钼可用,所以影响了德军装甲部队的战斗力。
钼是多才多艺的金属
两次世界大战使人们意识到钼对于军事的重要作用,战后,钼的年产量由10万吨上升到如今的20多万吨。钼在“战争金属”美誉的同时,其应用范围也越来越广,是在核能、医疗等高科技领域发挥着越来越重要的作用。
2018年,俄罗斯的莫斯科工程物理学院的科学家们发表了一项关于核燃料保护套的研究,他们使用钼合金代替现有的锆合金来用作核燃料保护外壳,可以提高核电站的性。
在现有的核电站中,铀燃料棒是安装在锆合金保护外壳内的。锆合金具有很高的耐腐蚀性,而且锆几乎不会和中子反应,所以是好的核燃料棒保护外壳。但是,在端情况下,比如由于地震和海啸导致应急冷却系统出现故障时,核反应堆内冷却水的水平面会一直下降,使铀燃料棒处于裸露状态,那么冷却不足会使高温的锆合金外壳与高温水蒸气产生氢化作用(即锆水反应),这会导致反应炉熔毁以及氢气爆炸——2011年的日本福岛核电站事故就是这样发生的。如果想要避免类似的事故,办法之一就是寻找一种比锆合金更优秀的核燃料棒保护外壳,而在众多金属材料中,只有钼同时满足比锆更耐腐蚀、更耐热、有更高的导热性以及更小的中子截面积(意味着不与中子反应)的条件,因而特制的钼合金很可能会在未来成为核电站防护装置的主要材料。
钼元素还被应用于医疗实践。比如,锝99是应用广泛的放射性造影剂,不过,锝99只能由一种方式制备,那就是钼99衰变。钼99是钼的一种放射性同位素,它的半衰期为2.75天,半衰期过后,钼99衰变为锝99。钼99的半衰期理想,这个时间不但了钼原子在原料地到医疗场所的运输过程具有的稳定性,而且了锝99的放射性可以在短时间内。如果半衰期过短,在运输过程中,钼原子可能产生放射性辐射的危险;如果半衰期过长,将影响医疗诊断的效率。在核医学中,80%的医疗到了锝99,而在美国,每天使用锝99的诊断就达 55000多起,所以,钼的重要性不言而喻。
生命对钼很敏感
生物老师常常会讲一个故事:某一年,新西兰的一个牧场遭遇了干旱,大量牧草枯萎而死,但有一条矿工经常踩踏的小路边上生长着茂密的绿草。这是为什么呢?原来这里的矿场是钼矿,矿工们每天工作,身上难免会沾上矿渣,当他们走路时不经意间将矿渣撒落在小路上,就如同上天赐予的“大补丸”,给路边的小草提供了的养料。另外,科学已经明,对农作物施加钼肥,可以增强农作物的抗病、抗旱和抗旱能力,提高产量。比如,根据科学家的统计,每亩农田施加钼肥20克,可使小麦增产35%,而大豆则可增产47%,蚕豆增产8%,绿豆增产32.8%,番茄增产75%。
钼不仅是植物生长和发育中的微量元素,也是植物发挥固氮功能的重要元素。氮是生命之源,有了氮,植物才变得有营养。然而,植物并不能直接吸收空气中的氮气,它们需要在固氮菌的帮助下,通过化学反应将氮元素吸收并存储起来。固氮菌为植物固氮的过程很复杂,需要一种催化剂,名为固氮酶,金属钼正是固氮酶的重要成分。每年,植物固氮总量约1亿吨,远超过人工固氮量,这都是钼元素的功劳。
不仅植物需要钼,我们人体内也需要钼,只不过需量少。成年人体内大约只有9毫克钼,而且它们分散在身体的各个部分。虽然如此,我们对于钼还是敏感的。比如,钼与我们头发的颜有关,因为钼元素会使头发偏红褐。又比如,我们的情绪也容易受钼的影响,有它,我们会精力充沛,神气十足,缺少或无它,我们会感到疲惫不堪,浑身乏力。钼为什么有这么大的本事呢?原因在于,钼是两种在新陈代谢中起重要作用的酶的组成成分,一是黄嘌呤氧化酶,一是亚硫酸盐氧化酶。这两种酶有钼存在时才具有活力,没有钼,就会失去活力,起不了催化作用。
由于钼在食物中比较广泛地存在着,小麦、豆类、猪肉、牛奶、蜂蜜都含有钼,人对于钼的需要量也不高,所以我们一般不会缺钼。如果身体摄入多余的钼,反而会引起金属中毒。
由此看来,钼这种罕见的元素,与我们的日常生活还真息息相关呢。
钼molybdenum
元素符号Mo,银灰难熔金属,在元素周期表中属ⅥB族,原子序数42,原子量95.94,面心立方晶体,常见化合价为+6、+5、+4。
在中世纪就使用辉钼矿(MoS2),因其外观很像石墨,被误认为是变态的石墨而用来制作铅笔芯。1778年瑞典化学家舍勒(C.W.Scheele)用硝酸分解辉钼矿,从中发现了一种新元素,以希腊文molybdos(似铅)命名。1782年瑞典化学家耶尔姆(P.J.Hjelm)首次制得金属钼(第三届全国有金属冶炼化工工程技术交流会暨成果展示会)。
资源
钼矿分布虽广,但只有少数矿床有开采价值。美国是钼矿的国家,产量占世界总产量的60%以上,其次是智利和加拿大。中国的钼矿产于东北、西北和中南等地区。具有工业价值的钼矿物为辉钼矿,其开采量占钼矿总开采量的90%。辉钼矿容易浮选,可由含钼0.06~0.3%的原矿选得含钼47~50%的精矿。钼的次生矿钼钨钙矿[Ca(Mo,W)O4]、铁钼华(Fe2O3·MoO3·H2O)、钼铅矿 (PbMoO4)和钼铜矿[2CuMoO4·Cu(OH)2]等也有一定开采价值。主要钼矿生产国(中国除外)的钼矿储量和产量(1979年,以钼计)如下:
性质和用途
常温下钼在空气中很稳定,高于600℃时很快地氧化生成三氧化钼(MoO3)。钼与氢不发生化学反应,但钼粉能吸收氢。在温度高于700℃时,水蒸气能将钼氧化成二氧化钼(MoO2)。钼与碳、碳氢化合物或一氧化碳在高于800℃下反应生成碳化钼(Mo2C)。钼能耐稀硫酸、氢氟酸、磷酸等酸腐蚀,但不耐硝酸、王水和氧化性熔盐的腐蚀。钼在常温下能耐碱,但在加热时则被碱腐蚀。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件。金属钼(第三届全国有金属冶炼化工工程技术交流会暨成果展示会)在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
冶炼
钼生产的主要原料为辉钼精矿。提取过程包括氧化焙烧,三氧化钼、钼粉和致密钼的制取等主要步骤,工艺流程见图。
辉钼精矿的氧化焙烧
一般在600℃下进行,主要化学反应为:2MoS2+7O2─→2MoO3+4SO2↑。焙烧温度不能超过650℃,否则造成MoO3的大量挥发和炉料的粘结。焙烧设备多采用连续操作的多膛炉或间歇操作的反射炉,也可以用流态化炉焙烧。
三氧化钼的制取
将焙砂用氢氧化铵溶液浸出(见浸取),生成钼酸铵溶液:
MoO3+2NH4OH─→(NH4)2MoO4+H2O
液中的铜、铁等杂质用硫化铵或硫化钠使它生成硫化物沉淀除去,然后加入硝酸铅除去过剩的硫离子。将溶液加热到55~65℃,用盐酸调节pH为2~2.5,在激烈的搅拌下析出多钼酸铵[(NH4)2O·mMoO3·nH2O]。为了进一步去除钙、镁、钠等杂质,可将多钼酸铵重新溶于氢氧化铵溶液中形成钼酸铵,过滤后将溶液蒸发,使氨挥发,而钼生成仲钼酸铵结晶[(NH4)2O·7MoO3·4H2O],经脱水和煅烧后得到纯度99.95%的三氧化钼。氧化钼的制取还可采用升华法,将焙砂在900~1000℃下加热,三氧化钼因蒸气压较高不断挥发,经布袋收尘器收集后,得到纯度大于99%的三氧化钼细粉。利用此法也可处理金属钼废料以回收钼。
金属钼粉的生产
在管状电炉中用氢还原三氧化钼。工业生产还原过程分两步:先在450~650℃下将MoO3还原成MoO2,再在900~950℃下将MoO2还原成钼粉。MoO3还可用碳还原成钼粉,但纯度较差。
致密钼的制取
①粉末冶金法,是将钼粉用酒精甘油溶液润湿混合,在压力约3吨力/厘米2下压制成坯条或坯块。将坯条在氢气氛中于1100~1200℃下预烧结,随后把电流直接通入坯条,使之加热到2200~2400℃进行高温垂熔(即高温烧结,见钨),得致密金属钼(第三届全国有金属冶炼化工工程技术交流会暨成果展示会)坯条。②熔铸法,一般是将已烧结的钼条进行真空自耗电弧重熔,可以得到重达数吨的钼锭。为了制取高纯钼锭,可采用真空电子束熔炼法和区域熔炼法。