您好,欢迎来到上海钧驰金属材料有限公司!

主营产品:钨钢回收,钨铜回收,水银回收

泉州高价废钼回收价格多少

价格

¥面议

起订量:1吨

更新时间: 2025-07-15

发 货 地

上海市青浦区华新镇华益路318号

苏兵

企业已认证

身份证已验证

手机已认证

邮箱已认证

13402176157

(请说在中科商务网上看到)

给我发消息

在线留言
第 3 年 上海钧驰金属材料有限公司

企业已认证

身份证已验证

手机已认证

邮箱已认证

苏兵

13402176157

商铺信息

上海钧驰金属材料有限公司

联系人:苏兵

𐁡𐁩𐁫𐁨𐁤𐁡𐁧𐁣𐁡𐁥𐁧

客 服:

本页信息为 上海钧驰金属材料有限公司 为您提供 钨钢回收,钨铜回收,水银回收

产品参数
  • 上门回收
  • 上海
  • 至上
  • 现金
产品优势
  • 数量不限、 现金收购 1.钨钢、钨合金边角料、磨削料、废PCB钻头、钨钢工具、废 钨粉、钨钢粉末、钨钢废料、硬质合金磨削料、含钨废料、合金磨削 料、铣刀片、钻头、立铣刀PCB钻头、V-CUT刀、锣刀、高比 重合金、无磁合金、钨钢粉末、钨绞丝(钨螺旋,加热子)等各种钨 钢废工具。 2.钼金属回收 :钼丝、钼板、钼片、钼铁边角料等各种 含钼材料。 3.镍金属回收:镍铁、镍板,镍花,镍皮,杂镍等各种 镍合金边角料等含镍材料 4.贵金属;铟丝,铟片, 钽丝 ,钽块 钽板 ,铌板。
  • 上海钧驰金属材料有限公司面向江浙沪地区收购废钨 钨钢 钼 镍 钴 钒 钽 汞 等稀有金属,信誉第一宗旨,竭诚为广大客户服务,欢迎各大厂商及客户来电来涵。我公司收购办法简便,直接现金结算,价格合理,公道,诚信经营。长期面向各模具厂,电子厂,五金加工厂,机械加工厂,模胚厂,电镀厂,不分生产厂家,销售,加工,只要是钨钴合金废料,大量回收,如贵公司有货或在其他单位能联系到货源,欢迎中介,定重酬!感谢能来电联系!我们将以诚信与您合作!

产品详情

  泉州高价废钼回收价格多少

  在生活中,有时需要将坚硬的金属切开,然而这些金属的硬度让我们望而却步。

  有这么一种神奇的金属元素,它就是钼。

  金属钼

  利用它制作的钼丝能够轻松将钢板切开,你很难想象它的工作原理!

  神奇的金属钼

  虽然大家可能对钼这种金属元素很陌生,但人体当中都或多或少含有微量的钼元素,其是人体不可缺少的存在。

  钼在人体当中主要对人的新陈代谢起推动作用,一旦缺乏钼元素,婴儿很有可能出现生长迟滞的情况,甚至是亡。

  成年人则会出现过高的尿酸、嘌呤等情况,危及人类的健康。

  高尿酸的六大危害

  如果钼元素过量又会对新陈代谢造成障碍,使尿道、肾脏部位出现结石。

  尿道与肾结石

  既然钼元素对人们如此重要,那么人体中的钼究竟从何而来呢?

  我们平时吃的一些食物中,就含有微量的钼元素,这些钼元素能够满足人体所需。

  比如,番茄和各类谷物的含钼量比较高,大部分蔬菜都含有钼元素。

  要是某个人检查出身体当中缺乏钼元素,那就要在饮食方面注意一下了。

  作为自然金属的钼元素,它本身的质也很神奇。

  自然界的钼元素

  钼元素在自然条件下,会形成一种名为辉钼矿的矿物质,经过一定的提炼加工,就可以得到纯金属钼。

  辉钼矿

  提炼出的金属钼呈现灰,属于立体方块状的金属结构。

  别看它长得像石墨,但是它的熔点和沸点要比石墨高上不少。

  金属钼的熔点高达2600摄氏度,沸点约为4600摄氏度,密度奇高且韧十足,常用于其他金属的制作当中。

  如果在钢铁工业当中,加入适量的钼元素,可以提升钢材的坚硬程度和耐腐蚀,并提高钢材的熔点。

  在航空航天领域当中,钼元素掺杂的复合材质,是建造耐高温部件的重要原材料。

  这些材料皆需耐高温

  科学研究表明,含钼量超过18%的镍基超合金,能够耐得住3000摄氏度以上的高温,实用。

  因此,钼元素也被运用到各种电子机械当中,成为一层坚硬的保护屏障。

  钼金属不仅坚硬,而且表层的摩擦系数小,光滑,含有钼元素的二硫化钼也是重要的润滑剂。

  除了各种高端领域,钼元素也被运用到肥料当中,使各种植物能够正常生长。

  科学界有传,钼元素很有可能在相关领域当替代石墨烯。

  石墨烯结构

  石墨烯由于其的分子结构,具有很强的稳定,能够被运用到各种领域,尤其是新能源和晶体管等高端领域当中,石墨烯有着重要。

  然而,相关研究表明,它相比石墨烯,质更加。

  加州纳米技术研究院此前用辉钼和二硫化钼制作出了一种新型芯片,这种芯片比普通芯片更小、更薄,并且延展和成本要比石墨烯为原料芯片更。

  芯片的内部结构

  只可惜,如今钼元素为原料的芯片技术要求太高,无法用于批量生产,相信日后人类的技术进步,能够从根源上解决这个问题。

  无独有偶,瑞士联邦理工学院洛桑分校的科学家也利用钼元素制作出了一种新型芯片。

  科学家研究其质的时候发现,钼元素原料的分子结构是二维的,所以它制作出的芯片薄。

  再加上延展等特点,使得钼元素芯片能够植入到人体当中。

  科学家表示,含有钼元素的辉钼是优秀的半导体材料,在芯片、二管等相关领域的制作中,有着无法估量的前景。

  辉钼矿

  此外,钼元素制作的钼丝,被广泛运用到切割领域,它的切割方式,对超乎大家的想象。

  钼丝的切割方式

  我们生活中常见的切割方式是暴力破坏材质的物质结构,达到分离的目的,然而钢铁的材质,常用的切割方式肯定不起效,这个时候就要用到线割。

  利用钼丝等工具制作的切割装置被称为线割器,它的结构很简单,机器有一个凹槽,在两端由一条钼丝连接,大部分钢铁通过钼丝,被轻松一分为二。

  如此神奇的切割方式,它的工作原理要紧之处在于这根钼丝。

  钼丝

  因为钼丝上是通了高压电流的,带有电流的钼丝与钢铁接触,能够瞬间产生高温,将接触点融化,达到切割的目的。

  当然这样的切割方式需要丝线拥有高的熔点,而钼丝恰好能够满足,是线割的主要原材料。

  根据丝线的材质不同,线割的速度存在差异。

  采用高熔点的铜、铁等原材料的丝线,属于低配版的线割机,本身的熔点并不是很高,能够承受的电流弱,速度自然就低,并且耐磨差,用不了多久就会出现损坏等情况。

  线割机结构

  而钼丝则是高配版的线割机,本身材质稳定,只要电流,高温很容易就将钢铁给切割开来,的实用。

  线割机的来源

  这么实用的线割机,又是谁发明的呢?

  上个世纪中期,苏联的拉扎联科夫妇发现,金属在受到放电的火花时,会被腐蚀和氧化。

  他们立刻反应过来,既然金属拥有如此质,为什么不生产一个放电的火花装置,来解决切割金属的难题呢?

  电火花点火装置

  于是花了几年时间,研发了电火花加工的方法,这是线割机的雏形,人们经过不断地改良,终于在1960年,出现了台线割机。

  然而,这样的切割方法并不受到欧美人的,于是就转卖到我国。

  因此,我国是世界上个将线割机用于工业生产的国家。

  一用吓一跳,没想到这种切割机如此好用,解决了工业生产中的许多难题。

  经过我国科学家的多次改良,线割机的丝线也不断更替,自从钼元素的特被发现后,钼丝便成为线割机的重要部件,充分发挥了线割机的优势。

  如今,欧家也在使用线割机进行各类金属切割操作,我国的线割机发展水平水涨船高,实现了智能化操作。

  工作中的线割机

  我国较为高端的线割机主要采用微型计算机控制,对切割对象进行自动化、化操作,属于世界一流切割技术。

  了解完钼丝制作的线割机操作后,相信大家对神奇的钼元素又有了更多的了解,那么它神奇的质还有哪些呢?

  钼元素的价值

  钼可以用于物制作当中,比如,钼酸铵就可以补充人体所需的钼元素,适量使用可以加强孩童的健康发育。

  钼酸铵剂

  利用钼制作的合金优点很多,被广泛用于各种领域。

  只可惜,钼在地球的储量并不多可,开采量约为800万吨。

  如何将为数不多的钼利用起来,是人类以后要思考的问题。

  实验室教育

  一、实验目的

  1.

  了解实验室管理制度

  2.

  主要掌握化学品使用、危险废物处置和应急救援

  二、实验室典型隐患及教育案例

  1.

  试剂瓶放在桌面边缘

  2.

  做完实验盖子不及时盖好拧紧

  3.

  废液桶与废弃物存放点无警戒标识

  4.

  典型事故、事例

  8

  ·

  12

  天津滨海新区爆炸事故——高校实验室管理的分水岭;

  2015

  年

  8

  月

  12

  日,天津市滨海新区发生火灾爆炸事故造成

  165

  人遇难 、

  8

  人失踪,

  798

  人受伤 ,造成直接经济损失

  68.66

  亿元。瑞海公司集装箱内的硝化棉在高温等

  因素的作用下自燃, 引起相邻集装箱内的硝酸铵等危险化学品发生爆炸。

  8

  月

  14

  日紧急《关于深入开展危险化学品和易燃易爆物品专

  项整治的紧急通知》

  三、一般

  1.

  应熟悉实验室环境: 水、 电阀门以及通道的位置。 熟悉各类灭火和

  应急设备的位置和使用方法。

  2.

  开展实验时要密切关注实验进展情况, 不得擅自离岗,进行危险实验时至

  少

  2

  人在场。 严禁将实验室内物品私自带出实验室。

  3.

  实验结束后, 一个离开实验室的人员检查并关闭整个实验室的

  水、 电、 气、 门窗。

  4.

  进入实验室要做好必要的个人防护, 不得在实验室内穿露脚趾的鞋子。

  5.

  严禁穿着实验室防护服离开实验室, 如就餐或去办公室、休息室和卫生间

  等。

  6.

  禁止在实验室工作区域进食、 饮水、 吸烟、 化妆和处理隐形眼镜。

  7.

  禁止在实验室储存食品和饮料。

  8.

  处理性实验材料和动物后, 以及离开实验室前都应洗手。

  9.

  实验室内用过的防护服不得和日常服装放在同一柜子内。

  四、消防

  1.实验室火灾隐患

  1)

  加热设备引起火灾

  2)

  违反操作规程引起火灾

  不规范的蒸馏、 回流等操作

  3)

  易燃易爆危险品引起火灾

  4)

  化学废弃物易引起火灾

  5)

  用电不规范或电路老化引起火灾

  6)

  违规吸烟, 乱扔烟头引起火灾

  2.

  火灾初起的紧急处理

  3.

  消防器材使用方法

  4.

  火场自救与逃生常识

  生命重要 !

  五、化学品

  1.

  危险化学品是指具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、环

  境具有危害的剧毒化学品和其他化学品。

  2.

  采购受公安机关管控, 应通过院系申请、 学校等相关部门审批, 由管理

  人员登录“危险化学品治安管理信息系统”

  进行网上备案,

  获得公安机关审批

  后, 统一采购。

  3.

  化学品保存的一般原则:保持整洁、

  通风、

  隔热、

  ,

  远离热源、

  火

  源、 电源和水源, 避免阳光直射。

  4.

  危险品分类存放要求 :如还原剂、 有机物等不能与氧化剂、硫酸、 硝酸

  混放;

  5.

  强酸不能与强氧化剂的盐类混放;

  6.

  遇酸可产生有害气体的盐类(如: 氰化钾等)不能与酸混放。

  六、化学品使用规范

  1.

  进行实验之前应先阅读使用化学品的技术说明书,了解化学品特性、

  影响因素与正确处理事故的方法,采取必要的防护措施。

  2.

  实验人员穿着适合的实验工作服,长衣长裤,不得穿短裤短裙以及露趾凉鞋。

  3.

  严格按实验规程进行操作,在能够达到实验目的和效果的前提下,尽量减少

  品用量,或者用危险性低的品替代危险性高的品。

  4.

  不可直接接触品、品尝品味道、把鼻子凑到容器口嗅闻品的气味。

  5.

  使用剧毒化学品、 爆炸性物品或强挥发性、 刺激性、 恶臭化学品时, 应

  在通风良好的条件下进行。

  七、危险废物处置

  :

  1.

  破损的玻璃仪器(试管、量筒、烧杯等)应专门存放,不得与实验垃圾混放。

  2.

  废试剂瓶倒尽残液后应使用纸箱包装存放。

  3.

  化学实验废液不得直接倒入下水道。液桶盛放不得超过大容量的

  80%

  。收

  集废液后应盖紧盖子(含内盖),存放位置要阴凉并远离热源、 火源。

  4.

  运送实验废物时,

  至少需两人同行,

  并穿着实验服,

  佩戴口罩和手套,

  做

  好防护。 配合管理人员检查并称重, 填写入库记录, 粘贴危险废物标签。

  八、应急救援:

  发生化学事故, 应立即报告老师, 并积采取措施进行应急救援, 然

  后送医院治疗。

  1.

  化学烧灼伤

  应立即脱去沾染化学品的衣物,迅速用大量清水长时间冲洗,避免扩大烧伤

  面。处理时,应尽可能保持水疱皮的完整性,不要撕去受损的皮肤。

  2.

  化学

  应迅速脱离低温环境和冰冻物体,用

  40

  ℃左右温水将冰冻融化后将衣物脱

  下或剪开,然后对部位进行复温,并尽快就医。

  3.

  吸入化学品中毒

  果断措施切断毒源,并打开门、

  窗,

  降低毒物浓度。迅速将伤员救离现场,

  搬至空气新鲜、 流通的地方,松开领口、 紧身衣服和腰带, 以利呼吸畅

  通, 使毒物尽快排出。

  .

  上学期实验:

  实验一 蛋白质浓度的测定(1)—— Folin-酚法

  一、实验目的

  1.

  学

  Folin-

  酚试剂法测定蛋白质含量的原理及方法

  2.

  学绘制标准曲线

  3.

  掌握用标准曲线求待测物质含量的方法

  二、实验原理

  1921 年,Folin 首创,利用蛋白质分子中酪氨酸残基(酚基)还原酚试剂

  (磷钨酸

  -

  磷钼酸)起蓝反应。

  1951

  年,

  Lowry

  对此法进行了改进,先在标本

  中加碱性铜试剂,再与酚试剂反应,提高了灵敏度。

  Folin-酚试剂在碱性条件下不稳定,其磷钼酸盐-磷钨酸盐易被酚类化合

  物还原而呈蓝反应(钼蓝和钨蓝的混合物)。由于蛋白质中含有带酚羟基的酪

  氨酸(Tyr) ,故有此显反应。该反应分两步进行,首先在碱性溶液中,蛋白质

  分子中的肽键与碱性铜试剂中的 Cu2+作用生成紫红的蛋白质- Cu2+复合物,然

  后,蛋白质- Cu2+复合物中所含的酪氨酸残基还原酚试剂中的磷钼酸和磷钨酸,

  生成蓝的化合物。

  在一定浓度范围内,蓝的深浅度与蛋白质浓度呈线性关系,故可根据预先

  绘制的标准曲线求出未知样品中蛋白质的含量。

  三、实验试剂及仪器

  1. 实验试剂

  (

  1

  ) 待测样品

  (

  2

  ) 酪蛋白标准品

  (

  3

  )

  Folin-

  酚试剂甲:

  (

  4

  )

  Folin-

  酚试剂乙:

  (

  5

  )酪蛋白标准溶液母液(

  500

  μ

  g/ml

  ):

  2. 实验仪器

  (

  1)722N 型可见分光光度计

  (

  2)试管 7 支、试管架

  (

  3)移液枪

  (

  4)水浴锅

  四、实验步骤

  1

  、标准曲线的绘制:

  取六支干净试管编号,按下表加入试剂:(单位毫升)

  2.

  待测样品:

  准确吸取待测样液

  0.5ml

  于

  7

  号试管内,加入蒸馏水

  0.5ml

  、

  Folin-

  试剂甲

  5.0ml

  、

  Folin-

  试剂乙

  0.5ml

  ,重复上步操作,测样品

  A500

  。

  五

  、

  实验结果与分析

  1.

  标准曲线绘制

  C

  X

  :为根据待测样品的吸光值查标准曲线所得的蛋白质浓度

  编号

  (

  标准溶液

  浓度

  )

  酪蛋白标准

  溶液母液

  (500

  μ

  g/ml)

  ml

  去离子水

  (ml)

  Folin-

  酚甲

  (ml)

  Folin-

  酚乙

  (ml)

  A500

  1

  0.0

  1.0

  5.0

  0.5

  0.000

  2

  0.2

  0.8

  5.0

  0.5

  X.XXX

  3

  0.4

  0.6

  5.0

  0.5

  X.XXX

  4

  0.6

  0.4

  5.0

  0.5

  X.XXX

  5

  0.8

  0.2

  5.0

  0.5

  X.XXX

  6

  1.0

  0.0

  5.0

  0.5

  X.XXX

  7(?)

  待测样液

  0.5ml

  0.5

  5.0

  0.5

  X.XXX2.

  计算待测样品浓度

  根据图中数值,计算出待测样品的浓度。

  六、实验注意事项

  (一)实验操作注意事项

  1. Folin-

  酚乙试剂在碱性条件下不稳定,当

  Folin-

  酚试剂加到碱性的铜

  -

  蛋白质溶

  液中后,立即混匀(加一管混匀一管),使还原反应发生在磷钼酸

  -

  磷钨

  酸试剂被破坏之前

  ;

  2.

  尽量减少各管之间的反应时间误差;

  3.

  一定要注意实验的时间,因为溶液的光密度值是随着时间在不断增大的,如

  果时间超过了

  30

  分钟,则测得的光密度值就不准确了;

  4.

  在使用分光光度计时,拿比皿是要拿它的毛面,不可以用手接触它的光滑

  面,自己手上的油污是测量值不准确;

  5.

  在擦拭比皿时,要顺着一个方向擦;

  6.

  在比皿中装入的液体量大约要是比皿体积的三分之二

  .

  (二)标准曲线制作注意事项

  1.

  作一条标准曲线至少要

  5

  个点

  2.

  被测物与标准物应在相同条件下测定

  3.

  尽量使未经过线上的实验点均匀分布在曲线或直线两侧

  4.

  标准曲线中标准物浓度有一定的线性范围,应使标准曲线范围在被测物质浓

  度的

  1/2

  ~

  2

  倍之间,并使吸光度在

  0.05

  ~

  1.0

  范围为宜

  (三)移液枪使用注意事项

  1.

  量程选择:

  35%-100%

  范围内佳

  2.

  大体积→小体积

  顺时针

  ;

  小体积→大体积 逆时针

  3.

  将移液枪端垂直插入吸头,左右微微转动,上紧即可

  4.

  吸液

  :

  垂直吸液,枪头尖端需浸入液面

  2-4mm

  以下。慢吸慢放,控制好弹

  簧的伸缩速度。吸液速度太快会产生反冲和气泡,导致移液体积不准确。

  5.

  放液

  :

  将吸嘴口贴到容器内壁并保持

  10-40

  °倾斜。平稳地把按钮压到一档,

  停约一秒钟后压到二档,排出剩余液体。压住按钮,同时提起移液枪

  ;

  松开

  按钮。 按弹射器除去移液嘴。

  6.

  使用完毕

  :

  至大量程

  ,

  让弹簧恢复原形,挂至移液枪架上。

  七、思考题

  1.

  试述

  Folin-

  酚试剂法的优点?

  2.

  应用本方法有哪些干扰作用?为什么?应如何注意?

  3.

  什么叫标准曲线? 绘制标准曲线有何实用意义?

  实验二 蛋白质浓度测定(2)-紫外线(UV)吸收法

  一、实验目的

  1.

  学紫外线(

  UV

  )吸收法测定蛋白质含量的原理

  2.

  了解紫外分光光度计的构造原理

  3.

  掌握它的使用方法。

  二、实验原理

  由于蛋白质分子中酪氨酸和氨酸残基的苯环含有共轭双键,因此蛋白质具

  有吸收紫外线的性质,吸收高峰在

  280nm

  波长处。在此波长范围内,蛋白质溶

  液的光吸收值(

  A280

  )与其含量呈正比关系,可用作定量测定。

  利用紫外线吸收法测定蛋白质含量的优点是迅速、简便、不消耗样品,低浓

  度盐类不干扰测定。因此,在蛋白质和酶的生化制备中(是在柱层析分离中)

  广泛应用。

  此法的缺点是:(

  1

  )对于测定那些与标准蛋白质中酪氨酸和氨酸含量差

  异较大的蛋白质,有一定的误差;(

  2

  )若样品中含有嘌呤、嘧啶等吸收紫外线的

  物质,会出现较大的干扰。 不同的蛋白质和核酸的紫外线吸收是不相同的,即

  使经过校正,测定结果也还存在一定的误差。但可作为初步定量的依据。

  三、实验试剂及仪器

  1. 实验试剂

  (

  1

  )标准蛋白质溶液(

  1mg/ml

  )

  (

  2

  )待测蛋白质溶液,浓度需稀释至

  1mg/ml

  附近。

  2. 实验仪器

  紫外分光光度计、微量移液器、枪头、试管和试管架等

  四、实验步骤

  1.

  标准曲线法:

  取

  8

  支试管,按下表加入试剂(单位

  ml

  ),并进行操作,绘制标准曲线,

  A280

  值为纵坐标,蛋白质浓度为横坐标(蛋白质浓度为

  mg/ml

  )。

  2.

  取待测蛋白质溶液

  2.0 ml

  于

  5

  号试管中

  ,

  加入蒸馏水

  2.0 ml

  ,摇匀,按上述方

  法测定

  A280

  ,在标准曲线上查出待测蛋白质浓度。

  五

  、

  实验结果与分析

  1

  . 原始数据

  :

  记录各管的

  OD

  值

  2

  . 绘制出标准曲线:要求规范作图

  (

  1

  )用铅笔作图、

  (

  2

  )标出横、纵坐标名称及单位

  (

  3

  )标出日期、作者 、曲线名称

  (

  4

  )曲线上体现出待测样品的

  OD

  值及浓度值。

  3.

  计算:蛋白质含量。

  (

  1

  )要求: 写出公式、代入数据、写出结果。

  (2

  )根据标准曲线

  R

  2

  值判断实验结果是否,分析可能造成实验误差

  的原因有哪些?

  六、实验注意事项

  1.

  比皿使用时注意不要沾污或将比皿的透光面磨损,应手持比皿的毛

  面。

  2.

  待测液制备好后应尽快测量,避免有物质分解,影响测量结果。

  3.

  测得的吸光度

  A

  好控制在

  0.2~0.8

  之间,超过

  1.0

  时要做适当稀释。

  4.

  开关试样室盖时动作要轻缓。

  5.

  不要在仪器上方倾倒测试样品,以免样品污染仪器表面,损坏仪器。

  6.

  比皿在盛装样品前,应用所盛装样品冲洗两次,测量结束后比皿应用

  蒸馏水清洗干净后倒置晾干。若比皿内有颜挂壁,可用无水乙醇浸泡

  清洗。

  七、思考题

  1.

  紫外吸收法与

  Folin-

  酚比法测定蛋白质含量相比,有何缺点及优点?

  2.

  若样品中含有核酸类杂质,应如何校正?

  3.

  分析实验误差产生的原因

  4.

  为什么吸光度

  A

  好控制在

  0.2~0.8

  之间?

  实验三 血清蛋白醋酸纤维素薄膜电泳

  一、实验目的

  1.

  了解电泳的一般原理

  2.

  掌握醋酸纤维素薄膜电泳操作技术

  3.

  掌握醋酸纤维薄膜电泳分离血清蛋白的方法

  二、实验原理

  血清中各种蛋白质的等电点不同,一般都低于

  pH7.4

  。它们在

  pH8.6

  的缓冲

  液中均解离带负电荷,在电场中向正移动。

  血清中含有清蛋白,

  α

  -

  球蛋白、

  β

  -

  球蛋白、

  γ

  -

  球蛋白和各种脂蛋白等,各种蛋白质由于氨基酸组分、立体构

  象、分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速

  度也不同,因此可以将它们分离。

  在相同碱性

  PH

  值缓冲体系中,

  分子量小、

  等电点低、带负荷电荷多的蛋白质颗粒在电场中迁移速度较快。

  醋酸纤维素薄膜电泳是采用醋酸纤维素薄膜作为支持物的一种电泳方法。

  醋酸纤维素是纤维素的羟基乙酰化所形成的纤维素醋酸酯,该膜具有均一的泡

  沫状结构,厚度约为

  120

  μ

  m

  ,通透性好,对分子移动阻力少,是一种良好的

  电泳支持物。具有微量、、简便、区带清晰、灵敏度高、便于摄影和保存

  等优点。常用于科学实验、生化产品分析和临床化验,如血浆蛋白、血红蛋白、

  球蛋白、脂蛋白、糖蛋白、甲胎蛋白、同工酶等的分离鉴定。

  三、实验试剂及仪器

  1.

  实验试剂、材料

  巴比妥

  -

  巴比妥钠缓冲溶液,染液,漂洗液,血清

  :

  医院采血

  2.

  实验仪器

  常压电泳仪、水平电泳槽、点样器、滤纸、醋酸纤维素薄膜、培养皿、镊子等

  四、实验步骤

  1.

  准备和点样 :

  将醋酸纤维素薄膜(

  2cm

  ×

  8cm

  )浸入缓冲溶液中,待浸透用镊子轻轻取出,夹在两层粗滤纸内吸干多余的缓冲液,然后将无光泽面朝上平放于滤纸

  上。点样器在血清上蘸一下,再将点样器轻印在加样线上,使血清成一条状点

  于醋酸纤维素薄膜一端

  1.5

  厘米处,将薄膜无光泽面朝下,点样端为阴,进

  行电泳。

  2.

  电泳条件:

  电压

  80-90V

  ,恒压,

  1h

  ,电流与薄膜多少相关。

  3.

  染、漂洗:

  电泳完毕,将薄膜浸于染液中

  10

  分钟,取出,置漂洗液中漂洗

  2-3

  次至

  背景无,再浸于蒸馏水中观察。

  五

  、

  实验结果与分析

  以醋酸纤维素薄膜为支持物,正常人血清在

  PH8.6

  的缓冲体系中电泳

  1h

  左

  右,染后可显示

  5

  条区带。清蛋白泳动快,其余依次为

  α

  1-

  、

  α

  2-

  、

  β

  -

  及

  γ

  -

  球蛋白,如下图所示。

  对照各自电泳结果,分析各将条带是否成功分离,存在的问题及原因有哪些?

  六、实验注意事项

  1 .

  薄膜的浸润与选膜是电泳成败的关键之一。

  2.

  应将薄膜表面多余的缓冲液用滤纸吸去,吸水量以不干不湿为宜。

  3.

  分清薄膜的点样面,点样应点在薄膜的毛面上。

  4.

  点样要细窄、均匀、集中;点样量要适量,不宜过多或过少; 动作要轻、

  稳,用力不能太大。

  5.

  注意薄膜放置的方向。电泳时应将薄膜的点样端置于电泳槽的负端,且

  点样面向下。

  6.

  勿使点样处与电泳槽接触。

  7.

  应控制染时间。时间长,薄膜底不易脱去;时间太短,着不易区分,

  或造成条带染不均匀,必要时可进行复染。

  七、思考题

  1

  .电泳时,点样端置于电场的正还是负?为什么?

  2

  .电泳后,泳动在前面的是何种蛋白质?各谱带为何种成分?请分析原因。

  3 .

  电泳图谱清晰的关键是什么?如何正确操作?

  实验四 维生素 C 的定量测定(2,6-二氯酚靛酚滴定法 )

  一、实验目的

  1.

  学用

  2,6

  —二氯酚靛酚滴定法测定维生素

  C

  含量的原理及方法。

  2.

  掌握滴定法的一般过程及操作技术

  二、实验原理

  维生素

  c

  又称为抗坏血酸,其还原型能还原染料

  2,6-

  二氯酚靛酚钠盐,本身

  则氧化成脱氢抗坏血酸。

  2,6-

  二氯酚靛酚在碱性溶液中呈深蓝

  ,

  被还原后变为

  无,在酸性介质中呈浅红。因此可用蓝的碱性染料

  2,6-

  二氯酚靛酚标准

  溶液滴定样品,对含维生素

  C

  的酸性浸出液进行氧化还原滴定

  ,

  染料被还原为无

  ,

  当到达滴定终点时

  ,

  多余的染料在酸性介质中则表现为浅红

  ,

  由染料用量计

  算样品中还原型抗坏血酸的含量。

  三、实验试剂及器材

  1. 实验试剂:

  (

  1

  )

  0.1% 2,6-

  二氯酚靛酚

  (

  2

  )

  1%

  、

  2%

  草酸溶液

  (

  3

  )标准抗坏血酸溶液(

  0.2mgVc/ml

  )

  (

  4

  )样液

  2. 实验器材:

  碱式滴定管、铁架台、蝴蝶夹、锥形瓶、微量移液器、枪头等

  四、实验步骤

  1.

  标准滴定:

  取标准

  Vc 1.0ml

  (含

  0.2

  毫克抗坏血酸)与空锥形瓶中,加入

  9.0ml 1%

  草酸,

  用

  2,6-

  二氯酚靛酚滴定至淡红,并保持

  15

  秒不变即为终点。用所用染料计算

  1ml

  染料相当于多少毫克抗坏血酸。滴定开始时,染料要迅速加入,直到红不

  立即消失,才一滴一滴加入,并不断摇动锥形瓶,直至淡红

  15

  秒不退。滴定

  过程一般不超过

  2

  分钟。

  2.

  样液滴定:

  取两份样液各

  10ml

  ,分别放入

  100ml

  锥形瓶中,滴法同前,但不加草酸

  计算样品抗坏血酸含量。

  五、实验结果与分析

  1.

  根据标准

  V

  C

  的量及滴定所需的染料,计算出每毫升染料可以滴定到少

  V

  C

  2.

  根据待测样液滴定所需的染料体积计算样液中

  V

  C

  的含量

  试分析测定的结果与实际是否相符,造成结果误差的原因有哪些?

  六、实验注意事项

  1.

  注意滴定管的正确使用

  首先加标准溶液到

  0

  刻度以上

  2-3ml

  处,排净尖嘴内的气泡。然后调整液面

  高度到

  0

  刻度或

  0

  刻度以下。

  2.

  滴液时先快后慢,接近所取体积时逐点滴入。

  3.

  读取刻度是目光平视刻度线,刻度线对准液体凹面。

  七、思考题

  1.

  实验过程中,要测得准确的还原型维生素

  C

  值,实验过程中应注意哪些操作

  步骤,为什么?

  2.

  在测定过程中,样品的草酸提取液为什么不能暴露在光下?

  3.

  试简述维生素

  C

  的生理意义。

  实验五 从动物组织中提取脱氧核糖核酸

  一、实验目的

  1.

  学和掌握用浓盐法从动物组织中提取

  DNA

  的原理和技术

  2.

  了解分离提取

  DNA

  的一般原理。

  二、实验原理

  1.

  动物细胞中的核糖核酸(

  RNA

  )与脱氧核糖核酸(

  DNA

  )与蛋白结合形成核

  蛋白。分别表示为

  RNP

  和

  DNP

  。

  RNP

  和

  DNP

  在不同浓度氯化钠溶液中的溶

  解度有显著差别。在

  0.14M NaCl

  中,

  DNP

  溶解度低,

  RNP

  溶解度高;在

  1-2M

  NaCl

  溶液中,

  DNP

  溶解度高,

  RNP

  溶解度低。故调整

  NaCl

  溶液的浓度可将

  RNP

  和

  DNP

  从样本中逐步分离出来。

  2.

  加变性剂

  SDS

  可使蛋白质变性,与

  DNA

  分离。 核酸本身带负电荷,结合正

  电荷的蛋白质,用于核酸提取的去垢剂,一般都是阴离子去垢剂。去垢剂的作用:

  1

  )溶解膜蛋白及脂肪,使细胞膜破裂;

  2

  )溶解核糖体上面的蛋白质,使其解聚,将核酸释放出来;

  3

  )对

  RNase

  、

  DNase

  有一定的抑制作用。如:

  SDS

  、脱氧胆酸钠、

  4-

  氨基水杨

  酸钠、萘

  -1.5-

  二磺酸钠、三异丙基萘磺酸钠

  3.

  用有机溶剂沉淀,去除蛋白。本实验所用的有机溶剂为:氯仿

  -

  异丙醇混合液

  (

  24:1

  ); 氯仿:使蛋白变性并加速有机相和水相的分层,增加核酸得率,同

  时去除脂类。 异丙醇:减少泡沫,也能促使有机相和水相分离。

  4. DNA

  不溶于乙醇等有机溶剂,因此可用乙醇沉淀法来纯化和浓缩

  DNA

  。

  DNA

  分离提取的原则

  1

  )

  DNA

  结构的完整

  2

  )排除其他分子的污染

  a.

  核酸样品中不应存在对其有抑制作用的有机溶剂和过高浓度的金属离子

  b.

  将其他生物大分子如蛋白、脂类分子的污染应降到

  c.

  排除

  RNA

  的污染

  三、实验试剂及器材

  1.

  试剂:

  1

  ) 新鲜猪肝

  2

  )

  0.14M NaCl-0.15M EDTA Na2

  溶液

  3

  )

  25% SDS

  4

  )

  5M NaCl

  5

  )

  氯仿

  -

  异丙醇混合液

  6

  )

  95%

  乙醇

  2.

  器材:

  离心机、恒温水浴箱、托盘天平、烧杯、玻棒、微量移液器等

  四、实验步骤

  1.

  将猪肝用

  0.14M Nacl-0.15M EDTANa2

  溶液洗去血液,剪碎,置匀浆机中研

  磨成糊状。

  2.

  取

  50 mL

  猪肝糜离心

  6min

  ,

  3500rpm

  。(离心机已经调整到位,直接操作即可)

  3.

  弃去上清液,剩余沉淀用

  20mL 0.14M Nacl-0.15M EDTA

  溶液洗涤,离心

  6min

  。

  重复以上操作一遍。

  目的是尽量除去

  RNP

  。所得沉淀为

  DNP

  粗品。

  4.

  向上述沉淀中加入

  0.14M Nacl-0.15M EDTA

  溶液,使总体积为

  44mL

  ,然后

  滴加

  25% SDS

  溶液约

  3mL

  (此步骤由老师把关),边加边搅拌。加毕,于

  60℃

  水浴保温

  10min

  ,其间不停搅拌,取出冷却至室温。

  目的是使核酸与蛋白质分

  离。

  5.

  加入

  5M Nacl

  溶液

  10mL

  ,此时

  Nacl

  的浓度正好为

  1M

  ,

  DNA

  的溶解度是水

  中的两倍,搅拌

  10min

  ,加入约一倍体积的氯仿

  -

  异丙醇(

  40ml

  )混合液,

  充分混匀,离心

  6min

  ,

  3500rpm

  。

  6.

  取出离心管,内容物分为三层,上层为

  DNA

  溶液,中间是变性蛋白质凝胶,

  底部为有机相。小心取出上清液,置于烧杯中。

  有机相回收!

  7.

  由老师加入

  1.5

  倍体积

  95%

  冷乙醇,边加边轻挑,可观察到

  DNA

  丝状物缠

  绕在玻棒上。

  由老师打分。

  五、实验注意事项(补充一下)

  1.

  各操作步骤要轻柔

  ,

  尽量减少

  DNA

  的人为降解。

  2.

  取各上清时

  ,

  不应贪多

  ,

  以防非核酸类成分干扰。

  3.

  异丙醇、乙醇等要预冷

  ,

  以减少

  DNA

  的降解

  ,

  促进

  DNA

  与蛋白等的分相及

  DNA

  沉淀。

  4.

  提取

  DNA

  过程中所用到的试剂和器材要进行无核酸酶化处理。

  5.

  试剂均用高压灭菌双蒸水配制。

  实验六 核酸浓度测定——紫外吸收法

  一、实验目的

  1.

  了解

  Denovix

  的基本原理并掌握其使用方法;

  2.

  掌握使用紫外分光光度法测定核酸含量的原理和方法。

  二、实验原理

  核酸、核苷酸及其衍生物都具有共轭双键,具有紫外吸收。

  RNA

  和

  DNA

  的

  紫外吸收峰为

  260nm

  。一般在

  260 nm

  波长下,每毫升含

  1mg DNA

  溶液的光吸

  收值约为

  0.020

  ,每毫升含

  1mgRNA

  溶液的光吸收值为

  0.022

  。故测定待测浓度

  RNA

  或

  DNA

  溶液

  260nm

  的光吸收值即可计算出其中核酸的含量。

  蛋白质由于含有芳香氨基酸,因此也能吸收紫外光。通常蛋白质的吸收高峰

  在

  280nm

  处,在

  260nm

  处的吸收值仅为核酸的十分之一或更低,故核酸样品中

  蛋白质含量较低时对核酸的紫外测定影响不大。

  纯净的

  RNA

  溶液,其

  A260/A280

  ≥

  2

  ;纯净的

  DNA

  溶液,其

  A260/A280

  ≥

  1.8

  。如果小于

  1.8

  或

  2.0

  ,表示存在蛋白质或酚类物质的影响。

  A230

  表示表示样

  品中存在一些污染物,如碳水化合物、多肽、苯酚等。

  Denovix

  核酸蛋白测定仪采用一个可以产生多个波长的光源,通过系列

  分光装置,从而产生特定波长的光源,光源透过待测试的样品后,部分被吸收,

  计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。

  dsDNA

  的消光系数为

  50

  ,核酸的浓度

  ng/ul=A260

  ╳

  50

  RNA

  的消光系数为

  40

  ssDNA

  的消光系数为

  33

  三、实验试剂及器材

  (

  1)

  Denovix

  核酸蛋白分析仪(微量)

  (

  2)微量移液枪、微量枪头、1.5ml 离心管、

  ddH2O

  、吸水纸、擦镜纸

  四、实验步骤

  1.

  清洗样品台:

  2μl

  灭菌的

  ddH2O

  点在样品台上,放下悬臂,

  10s

  后抬起悬臂,

  用干净的无尘纸擦掉即可。

  2.

  使用溶解样品的缓冲液

  1-1.5μl

  点在样品台上,放下悬臂,点击

  Blank

  ,测完

  之后擦掉即可。

  3.

  混匀样品后,

  1-1.5μl

  点在样品台上,放下悬臂,点击

  Measure

  ,出现下图的

  界面。

  4.

  测量完样品后请及时擦掉样品。

  五、实验结果

  记录核酸的浓度,并分析纯度

  六、实验注意事项

  1.

  首次使用,请先清洁样品台。抬起悬臂,滴

  1-2ul

  灭菌蒸馏水于样品台上,

  放下悬臂使上下界面接触,再用无尘纸或擦镜纸擦去上下表面液滴。

  2.

  打开测量应用,在样品台上滴加

  1ul

  溶解样品的

  buffer

  ,注意观察液滴中

  不能有气泡。

  3.

  测量结束后,立即擦掉样品,样品干在样品台上,造成污染。

  实验七 血清谷丙转氨酶的测定(King 氏法)

  一、实验目的

  1.

  掌握血清谷丙转氨酶活力测定的原理和方法;

  2.

  进一步熟练标准曲线的制作和分光光度计的使用。

  二、实验原理

  1.

  生物机体内转氨基作用是

  α

  -

  氨基酸的氨基通过酶促作用转移到

  α

  -酮酸的

  酮基位置上,生产相应的酮酸和氨基酸的化学反应。催化这反应的酶称为转

  氨酶,其辅酶为磷酸吡哆醛。转氨酶广泛存在于机体的各种组织中,在肝、

  心、肾等组织中的谷丙转氨酶、谷草转氨酶活性较高。在正常的新陈代谢过

  程中,血清内维持一定水平的转氨酶活性(即正常值)。

  当肝、心、肾等组织发生病变时,由于组织细胞肿胀,坏死导致大量的酶释

  放至血流中,从而引起血清谷丙转氨酶、谷草转氨酶活性显著升高。因此测定

  这些酶的活性对某些疾病的临场诊断具有重要的参考价值。

  2.

  血清中的谷

  -

  丙转氨酶(

  ALT

  ),在

  37

  ℃、

  pH7.4

  的条件下,可催化基质(底

  物)液中的丙氨酸与

  α

  -

  酮戊二酸生成谷氨酸和丙酮酸。

  3.

  生成的丙酮酸可与起终止和显作用的

  2,4

  二硝基苯肼发生加成反应,生成

  丙酮酸

  -2,4-

  二硝基苯腙,进而在碱性环境中生成红棕的苯腙硝醌化合物,

  其颜的深浅在一定范围内与丙酮酸的生成量,亦即与

  ALT

  活性的高低成正

  比关系。据此与同样处理的丙酮酸标准液相比较,便可算出或通过标准曲线

  查出血清中

  ALT

  的活性。

  King

  氏法谷丙转氨酶活性单位:每毫升血清在

  37℃

  与

  pH7.4

  的基质液

  作用

  60min

  ,生成

  1μmol

  丙酮酸为一个单位。临床检验取血清量为

  0.1mL

  ,

  报告数据以

  100mL

  血清计算,因此实际测得结果乘

  1000

  即可。例如

  0.1mL

  丙酮酸标准液中丙酮酸含量为

  0.2μmol

  ,即相当

  GPT200U/100mL

  。

  三、实验试剂及器材

  1.

  试剂:

  1

  )

  pH7.4

  磷酸缓冲溶液

  2

  )

  L-

  丙氨酸和

  α

  -

  酮戊二酸混合液

  3

  )丙酮酸标准液

  4

  )

  2

  ,

  4 -

  二硝基苯肼溶液

  5

  )

  0.4mol/L NaOH

  溶液

  2.

  器材:

  722

  分光光度计、微量移液器、枪头、恒温水浴锅、试管、试管架等

  四、实验步骤

  1.

  取

  4

  支干燥试管,按下表加入试剂:

  管号

  血 清

  (

  mL

  )

  基质液

  (

  mL

  )

  标准丙酮酸

  (

  mL

  )

  磷酸缓冲液

  (

  mL

  )

  1

  (空白管)

  0.6

  2

  (对照管)

  0.1

  0.5

  3

  (标准管)

  0.5

  0.1

  4

  (样品管)

  0.1

  0.5

  2.

  加毕摇匀,置

  37

  ℃水浴中保温

  30

  分钟,取出冷却至室温。各加

  0.5mL 2,4 -

  二硝基苯肼溶液,准确作用

  5

  分钟。各加

  0.4mol/L NaOH

  溶液

  5mL

  ,摇匀,

  10

  分钟后比。以

  1

  号管调零,测

  2

  、

  3

  、

  4

  号管

  A530

  ,按下式计算丙酮酸生

  成量(注意单位):

  五、实验注意事项

  1.

  为溶血及其他因素对酶活性测定的影响,实验过程所用的一切器皿(注

  射器、试管等)应清洗干净,干燥后方能使用。

  2.

  为操作结果,测定酶活性时应恒定

  pH

  ,保温时间,选用固定的比

  计,比杯以减少误差。

  3.

  吸量准确,严格控制反应时间和温度。

  实验八 基于口腔拭子 PCR 基因组 DNA 扩增实验

  一、 实验目的

  1.

  了解

  PCR

  基因扩增的一般原理

  2.

  掌握

  PCR

  基因扩增操作技术

  二、 实验原理

  PCR

  (

  Polymerase Chain Reaction

  )是聚合酶链式反应的简称,指在引物指导下由

  酶催化的对特定模板

  (

  克隆或基因组

  DNA)

  的扩增反应,是模拟体内

  DNA

  复制

  过程,在体外特异性扩增

  DNA

  片段的一种技术,在分子生物学中有广泛的应

  用,包括用于

  DNA

  作图、

  DNA

  测序、分子系统遗传学等。

  1. PCR

  扩增的基本特征及要素如下:

  (

  1

  )

  PCR

  技术的基本原理类似于

  DNA

  的天然复制过程

  (

  2

  )是以单链

  DNA

  为模板,

  4

  种

  dNTP

  为底物,在模板

  3'

  未端有引

  物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量

  的模板

  DNA

  得到大程度的扩增。

  (

  3

  )

  PCR

  反应需要在一定的条件下才能完成,只有这些条件协调作

  用时才能达到很好的效果

  : (1)

  缓冲液

  ; (2)

  脱氧三磷酸核苷

  (dNTP) ;(3)

  引物

  ;(4)

  模板

  ; (5) DNA

  聚合酶。

  2.

  根据

  DNA

  的半保留复制,以及

  DNA

  分子在体外不同的温度下双

  链和单链可相互转变的机制,在体外人为地控制反应系统的温度,使

  双链

  DNA

  变性

  (denature)

  、退火

  (annealing)

  、延伸

  (extension),

  实现

  DNA

  的扩增。

  (

  1

  )变性:模板

  DNA

  通过加热至

  95

  ℃左右,使

  DNA

  双螺旋的氢键断裂,

  形成单链

  DNA,

  作为反应的模板;

  (

  2

  )退火:模板

  DNA

  经加热变性成单链后,温度降至引物的

  Tm

  值

  左右或以下

  (

  比

  Tm

  低

  5

  °

  C

  ,通常为

  55~65

  °

  C)

  ,引物与模板

  DNA

  单链的互补序列配对结合;

  (

  3

  )延伸:

  DNA

  模板

  -

  引物结合物在

  DNA

  聚合酶

  (

  一种耐热的

  DNA

  聚合酶

  )

  的作用下,于

  70~74

  ℃下,以引物

  3'

  端为起始点按

  5'

  →

  3'

  方向

  使

  DNA

  新链延伸。

  三、试验试剂及器材

  1.

  仪器:

  (

  1

  )

  PCR

  仪

  (

  2

  )移液枪、涡旋仪、离心机

  2.

  样品及试剂:

  (

  1

  )样品:口腔拭子

  (

  2

  )样本稀释液

  (

  3

  )亚甲基四氢叶酸还原酶(

  MTHFR

  )

  C677T

  试剂盒

  四、实验步骤

  1.

  口腔拭子样本采集

  (

  1

  )取样前

  30

  分钟,不要吃东西,吸烟,饮酒等。准备一杯清水,

  饮入约

  50ml

  清水充分洗漱口腔约

  10

  秒,吐掉;

  (

  2

  )重复上述步骤

  2-3

  次。取样推荐漱口后半个小时 。

  (

  3

  )撕开口腔拭子外包装,小心取出口腔拭子(注意:整个取样过

  程中手不能接触拭子部分);

  (

  4

  )用拭子刮拭脸颊内部

  20-30

  次,尽量避免接触牙齿跟舌头;

  (

  5

  )将拭子伸入采样管,根据不同型号的拭子采用推入或折断采样头;

  (

  6

  )旋转采样管,采样完成。

  2.

  样品的处理

  (

  1

  )取拭子样本涡旋混匀

  (30s

  左右

  )

  ,再以

  1

  :

  2

  吸取拭子样液与样

  本稀释液涡旋混匀,反应

  2

  分钟后,作为模板进行

  PCR

  实验。

  (

  2

  )

  PCR

  体系准备:

  每人份需做两个反应,取两个

  0.2ml PCR

  管,在

  PCR

  管盖上标记

  M

  、

  WT

  ;在标有

  M

  的管中加入

  44μl M

  扩增液,在标有

  WT

  的管中加入

  44μl

  WT

  扩增液;分别向以上的

  M

  和

  WT

  管中个加入

  1μl

  反应液,盖紧管盖,涡旋混匀,离心待用;在标有

  M

  和

  WT

  的管中分别加入

  5μl

  待测样本

  (

  已用样本

  稀释液处理过

  )

  ,盖紧管盖,涡旋混匀,瞬时离心。

  3. PCR

  扩增

  将

  PCR

  管放入

  PCR

  仪中,按如下程序扩增:

  50

  ℃

  2 min

  ;

  95

  ℃

  3min30sec

  ;

  94

  ℃

  5sec

  、

  60

  ℃

  10sec

  、

  65

  ℃

  30sec

  (

  31Cycles

  );

  65

  ℃

  10min

  ;

  4

  ℃

  Hold

  。

  取出

  PCR

  产物,

  2~8

  ℃保存。

  五、结果分析

  1.

  从密封袋中取出检测卡,将待测样本

  M

  与

  WT

  管中的

  PCR

  产物(用

  手动或者自动化加样平台)滴加在检测卡对应的样品垫处,待

  2~5 min

  对结果

  进行判读,

  20min

  后结果不。

  2.

  将待测样本

  M

  与

  WT

  管中的

  PCR

  产物分别滴加在检测卡对应的样品垫

  上,根据在检测线(

  T

  线)是否出现条带判读

  C677T

  位点的基因型。若

  M

  管

  产物在试纸条上

  T

  线处不出现条带而

  WT

  管产物出现条带,则为野生型

  (

  677CC

  型);反之则为纯合突变型(

  677TT

  型),若两管产物均在试纸条

  T

  线

  处出现条带则判读为杂合突变型(

  677CT

  型);无效判定:质控线(

  C

  线)不

  出现条带,可能为操作不正确或试纸条已变质损坏。

  六、注意事项

  实验室应该遵循

  PCR

  实验规范的要求分区操作,各区物品均为,不得

  交叉使用,加模板和引物的移液器不能混用,每次加样后均需更换吸头。

  1

  .隔离不同操作区

  ;

  2

  .分装试剂

  ;

  3

  .严格实验操作

  ;

  4

  .严格按无菌操作的原则进行

  PCR

  操作等。

  七、思考题

  1.

  循环次数是否越多越好

  ?

  为何?

  2.

  如何根据实验结果优化

  PCR

  体系?

  下学期实验:

  实验一 核酸浓度测定——定磷法

  一、实验目的

  1.

  掌握定磷法测定核酸含量的原理和方法

  2.

  熟练掌握分光光度计的使用方法

  二、实验原理

  1.

  核酸分子中含有一定比例的有机磷,一般为

  9.2%

  左右

  (RNA

  含磷量约

  9.0%

  ,

  DNA

  含磷量约为

  9.2%)

  ,若测得某一核酸样品中有机磷的含量,即可推算其

  核酸的含量。

  2.

  用强酸使核酸分子中的有机磷消化成无机磷

  3.

  酸性环境中,无机磷再与钼酸铵结合成磷钼酸铵。

  PO

  4 3-

  + 3NH

  4 +

  + 12MoO

  4 2-

  + 24H

  +

  (NH

  4

  )

  3

  PO

  4

  ·

  12MoO

  3

  ·

  6H

  2

  O

  ↓

  (

  黄

  )+6H

  2

  O

  4.

  当有还原剂存在时,

  Mo

  6+

  被还原成

  Mo

  4+

  ,此

  4

  价钼再与试剂中的其它

  MoO

  4 2

  -

  结合成

  Mo(MoO

  4

  )

  2

  或

  Mo

  3

  O

  8

  呈兰,称为钼兰。

  钼兰在一定浓度范围内

  (

  无

  机磷含量在

  1

  —

  25

  μ

  g),

  兰的深浅和磷酸的含量成正比

  ,

  可用比法测定其

  光吸收值。

  (NH

  4

  )

  3

  PO

  4

  ·

  12MoO

  3

  ·

  6H

  2

  O +

  还原剂(抗坏血酸)

  钼兰

  Mo(MoO

  4

  )

  2

  或

  Mo

  2

  O

  8

  三、实验试剂及器材

  1.

  试剂:

  1

  ) 硫酸

  2

  )标准磷溶液(

  20

  微克磷

  /

  毫升)、

  3

  )定磷试剂(在使用前将上述试剂按以下比例混合

  ,

  蒸馏水

  :17% H

  2

  SO

  4

  :

  2.5%

  钼酸铵

  : 10%

  抗坏血酸

  = 2

  :

  1

  :

  1

  :

  1

  (

  V/V

  ))

  4

  )样液

  2.

  器材:

  通风橱、消化仪、容量瓶、移液器、试管、

  722

  分光光度计等

  四、实验步骤

  1.

  磷标准曲线的绘制:取

  6

  只试管,按下表加入试剂

  管号

  标准磷溶液

  (mL)

  去离子水

  (mL)

  定磷试剂

  (mL)

  1

  0

  3

  3

  2

  0.2

  2.8

  3

  3

  0.4

  2.6

  3

  4

  0.6

  2.4

  3

  5

  0.8

  2.2

  3

  6

  1

  2

  3

  7

  总磷

  3mL

  0

  3

  8

  无机磷

  3mL

  0

  3

  加毕摇匀,于

  45℃

  水浴中保温

  10

  分钟(注意保温时间相同),冷却,测

  A660

  ,

  以磷含量为横坐标,

  A660

  为纵坐标作图。

  2.

  总磷的测定:

  取样液

  1.0 mL

  于克氏烧瓶中,加入

  2.5mL 27% H2SO4 ,

  烧瓶口放一小漏斗,

  于通风橱中加热消化,浓烟散尽溶液基本无透明即表示消化完成。冷却,将消

  化液移至

  100mL

  容量瓶中,用少量去离子水冲洗烧瓶两次,洗涤液一并倒入容

  量瓶,定容,摇匀后取

  3.0mL

  置于

  7

  号试管中,加入定磷试剂

  3.0mL

  ,摇匀,

  45℃

  水浴保温

  10

  分钟,测

  A660

  。

  3.

  无机磷的测定:

  取样液

  1.0mL

  于

  100mL

  容量瓶中,加去离子水至刻度,摇匀后取

  3.0mL

  置

  于

  8

  号试管中,加入

  3mL

  定磷试剂,摇匀,

  45℃

  水浴保温

  10

  分钟,测

  A660

  。

  4.

  计算:

  有机磷

  =

  总磷

  -

  无机磷

  由标准曲线查得有机磷微克数(

  X

  )

  ,

  按下式计算样品中核酸百分含量。

  样品重量(

  2000

  微克)

  五、实验注意事项

  1.

  消化溶液定容后务必上下颠倒混匀后再取样。

  2. 1-8

  号管

  同时

  加入定磷试剂后再放入

  45

  度水浴。

  3.

  分光光度计的使用:不用的时候要开着盖,注意比皿毛面。

  顺序为

  1-4

  ;

  1 5-7

  ;

  1 8

  。个不要动,用于调零。

  4.

  标准曲线的绘制

  :

  得到

  1-8

  号管的吸光度后,写在实验报告表格的右侧。进

  里面的电脑,用

  excel

  拟合曲线,得到

  R

  方值,写在大家的实验报告纸上。要

  求

  R

  方大于

  0.995

  ,回去写实验报告时需要用坐标纸。

  5.

  废液盆里

  只能

  倒

  1-8

  号管中的溶液。枪头、擦镜纸扔在一次性杯子里。

  6.

  试剂及器皿清洁,不含磷;研究生检查试管内水珠不挂壁才能走。

  实验二 胍盐-

  β

  巯基乙醇法提取 RNA

  一、实验目的

  1.掌握胍盐/ß-巯基乙醇法提取 RNA 的原理和方法。

  2.掌握链 cDNA 合成的原理和方法。

  二、实验原理:

  RNA 的提取方法:

  1.异硫氰酸胍/苯酚法(TRIZOL)

  2.胍盐/ß-巯基乙醇法

  胍盐裂解样本,抑制 Rnase 的活性,

  β

  -巯基乙醇变性蛋白,离心柱上用 DNA

  和蛋白酶消化基因组 DNA 和蛋白,然后漂洗纯化的方法。

  3.介质吸附法

  RNA 的鉴定分析

  纯度: OD260/OD280 1.9—2.1 ,说明有部分降解荧光光谱

  链 cDNA 的合成:

  以 RNA 为模板,反转录为 cDNA,由逆转录酶催化,该酶合成 DNA 时需要引

  物引导,常用引物是 oligo dT、随机引物或基因特异引物(GSP)维生素 B2易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光照易分解,

  对热稳定。维生素 B2 溶液在 430~440 nm 蓝光的照射下,发出绿荧光,荧

  光峰在 535 nm。维生素 B2 在 pH=6~7 的溶液中荧光强度大,在 pH=11 的碱

  性溶液中荧光消失,所以可以用荧光光度法测维生素 B2 的含量。

  三、试剂与仪器:

  总 RNA 提取试剂盒(天根 RNAprep Pure Cell/Bacteriit);链 cDNA

  合成试剂盒(Tara PrimeScript™ RT Master Mix);无菌,无RNA酶离心

  管无菌,无 RNA 酶枪头低温离心机等

  四、实验操作:

  1.提取总 RNA

  1) 裂解细胞:确定细胞数量,吸除细胞培养基上清,加入 PBS 后吸除,加入

  600ul 裂解液 RL(胍盐/ß-巯基乙醇)5min。

  2) 将溶液转移至过滤柱 CS 上(过滤柱 CS 放在收集管中),12,000 rpm 离

  心 2 min,收集滤液。

  3) 向滤液中加入 1 倍体积 70%乙醇,混匀,得到的溶液和沉淀一起转入吸附柱

  CR3 中, 12,000 rpm 离心 60 sec,倒掉收集管中的废液。

  4) 向吸附柱 CR3 中加入 350

  μ

  l 去蛋白液 RW1,12,000 rpm 离心 60 sec,倒掉

  收集管中的废液,将吸附柱 CR3 放回收集管中。

  5) 向吸附柱 CR3 加入 80

  μ

  l 的 DNase I 工作液(10

  μ

  l DNase I 储存液

  +70

  μ

  l RDD 溶液),室温放置 15 min。

  6)向吸附柱 CR3 中加入 350

  μ

  l 去蛋白液 RW1,12,000 rpm 离心 60 sec,倒掉

  收集管中的废液,将吸附柱 CR3 放回收集管中。

  7)向吸附柱 CR3 中加入 500

  μ

  l 漂洗液 RW ,室温静置 2 min,12,000 rpm 离心

  60 sec,倒掉收集管中的废液,将吸附柱 CR3 放回收集管中。再重复一次。

  8)12,000 rpm 离心 2 min,倒掉废液。将吸附柱 CR3 置于室温放置 10 分钟,以

  彻底晾干吸附材料中残余的漂洗液。

  9)将吸附柱 CR3 转入一个新的 RNase-Free 离心管中,加入 30-100

  μ

  l

  RNase-Free ddH2O 室温放置 2 min,12,000 rpm 离心 2 min,得到 RNA 溶液。

  10)RNA 鉴定分析(浓度,纯度)。2. 采用 TaRa PrimeScript RT Master Mix 进行 cDNA 链合成:

  1)按下列组分配制 RT 反应液

  5X PrimeScrip Mix 2

  μ

  l

  Total RNA (50

  μ

  M) -- ul

  RNase free H2O up to 10

  μ

  l

  2)反转录反应条件如下

  37℃ 15min (反转录反应)

  85℃ 5sec (反转录酶失活反应)

  五、实验注意事项

  1. 严格控制外源性 RNA 酶的污染:外源性的 RNA 酶存在于操作人员的手汗、唾

  液等,也可存在于灰尘中,造成器械、玻璃制品、塑料制品、电泳槽、研究人

  员的手及各种试剂的污染。

  2. 大限度地抑制内源性的 RNA 酶:而各种组织和细胞中则含有大量内源性的

  RNA 酶。

  3. 戴手套。因为皮肤经常带有细菌,可能导致 RNase 污染。

  4. 使用无 RNase 的塑料制品和枪头避免交叉污染。

  5. RNA 在裂解液 RL 中时不会被 RNase 降解。但提取后继续处理过程中应使用不

  含 RNase 的塑料和玻璃器皿。

  6. 配制溶液应使用无 RNase 的水。

  实验三 real-time PCR 测端粒酶 mRNA 表达

  一、实验目的

  1.掌握 RT-PCR 基因扩增的原理和过程

  2.了解端粒酶的结构与功能

  二、实验原理:

  1. 实时定量 PCR 技术:

  利用荧光信号的变化实时检测 PCR 扩增反应中每一个循环扩增产物量的变化,

  通过 Ct 值和标准曲线的关系对起始模板进行定量分析。

  Ct 值的定义:PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。

  Xn = X0 × (

  1+En)Ct

  lg Xt =lg X0 + Ct lg(

  1+En)

  Ct = -k lg X0 + b

  X0 :起始模板数量

  En:扩增效率

  Xt:荧光扩增信号达到阈值时扩增产物的量,在阈值设定以后,它是一个常数

  Log 模板起始浓度与 Ct 值呈线性关系。

  模板 DNA 量越多,荧光达到阈值的循环数越少,即 Ct 值越小。

  2.常用荧光标记方法:

  特异性荧光标记 TaqMan Probe

  非特异性荧光标记 SYBR Green I:是一种结合于 dsDNA 双螺旋小沟区域

  的具有绿激发波长的染料。

  问题点:

  SYBR Green I 与双链 DNA 进行结合后散发荧光,因此如果反应体系

  中有非特异性扩增或引物二聚体的产生,也将同时被检测,从而可能导致检测

  结果不准确。

  关键点:

  设计合适引物,非特异性扩增!

  端粒酶:通过识别并结合富含胞嘧啶 C 的端粒末端,以自身 RNA 为模板, TER

  催化,合成端粒的 DNA 重复序列,从而阻止随着 DNA 复制和细胞分裂所

  造成的端粒的不断缩短, 进而稳定染体的长度,避免细胞因端粒丢失

  所导致的凋亡。因此,端粒酶在细胞永生化和肿瘤发生中起着重要作用。

  相对定量分析——2 -

  ∆ ∆

  Ct 法

  三、试剂与仪器:

  1. LightCycler 480 SYBR Green I Master

  2. LightCycler 8-Tube Strips (white)

  3. 无菌,无RNA酶离心管

  4. 无菌,无RNA酶枪头

  四、实验操作:

  1. 加样:试剂 体积

  模板(稀释 5 倍) 2µl

  Master mix,2×conc. 10µl

  正向引物 1µl

  反向引物 1µl

  水,PCR 级别 6µl

  总体积 20µl

  2.PCR 程序设定:SYBR Green I 选择“SYBR Green I /HRM Dye”,反应总体积

  20 ul。

  3.设定每个程序中对应步骤的①温度(Target)、②信号获取模式(Acquisition

  Mode)及 ③时间(Hold)。

  4.设定完成后,放入样板,窗口右下方的“Start Run” 按钮将由灰变为蓝,

  此时即可点击之,开始运行实验。

  5.运行完毕后,点击界面左侧“Sample Editor”,对样本详细信息进行编辑。

  6.点击界面左边的“Analysis”,进入分析界面,进行 Tm 分析 (Tm Calling) 分

  析和相对定量 (Relative Quantification) 分析

  五、结果分析

  2 - △△Ct 法:假设目的基因和参照基因扩增效率都接近 100%

  △Ct(第 n 组)=16-17=-1 △Ct(组)=18-17.4=0.6

  △△Ct=△Ct(第 n 组)-△Ct(组)=-1-0.6=-1.6

  比率(癌细胞组/正常细胞组)=2-△△Ct=2-(-1.6) = 3

  所以 TERT 基因在癌细胞的表达水平是正常细胞的 3 倍。

  要求实验报告分析出自己组对比组的结果

  六、实验注意事项

  1、能标准的使用微量移液器,使重复样本得到相同的结果。2、学会分析溶解曲线,得到循环 CT 值后学会如何分析结果。

  实验四 蛋白分子量测定——SDS-聚丙烯酰胺凝胶电泳

  一、实验目的

  1.

  学

  SDS-PAGE

  测定蛋白质分子量的基本原理

  2.

  掌握

  SDS-PAGE

  垂直板电泳的操作方法

  二、实验原理

  聚丙烯酰胺凝胶(

  PAGE

  )是由丙烯酰胺(

  Acr

  )和交联试剂

  N,N

  ’

  -

  甲叉双丙

  烯酰胺

  (Bis)

  在有引发剂(如过硫酸铵)和增速剂(如

  N,N,N

  ’

  ,N

  ’

  -

  四甲基乙二胺,

  TEMED

  )的情况下聚合而成的。在一定浓度范围内,改变聚合体系中

  Acr

  和

  Bis

  的比例,可得到不同网眼大小的凝胶,由于凝胶的三维网状结构,对在凝胶中泳

  动的不同分子量的质点有着选择和阻碍,因此具有分子筛效应,决定着聚丙烯酰

  胺凝胶的有效分离笵围。

  SDS-

  聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进了十二烷基硫酸

  钠(

  sodium dodecyl sulfate

  ,简称

  SDS

  ),

  SDS

  是一种阴离子去污剂,它能破坏

  蛋白质分子之间以及与其他物质分子之间的非共价键,使蛋白质变性而改变原有

  的空间构象。是在强还原剂,如巯基乙醇存在下,由于蛋白质分子内的二硫

  键被还原剂打开,不易再氧化,这就了蛋白质分子与

  SDS

  充分结合,形成

  带负电荷的

  SDS-

  蛋白质复合物。

  带负电荷的蛋白质

  -SDS

  复合物由于结合了大量的

  SDS

  ,使蛋白质丧失了原有的电荷状态,形成了仅保持原有分子大小为特征的负离子团块,从而降低或消除

  了各种蛋白质分子之间天然的电荷差异。

  蛋白质

  -SDS

  复合物在水溶液中的形状,近似于雪茄烟形的长椭圆棒。不同蛋

  白质的

  SDS

  复合物的短轴长度都一样,约为

  1.8nm

  ,而长轴则随蛋白质的分子

  量成正比变化。这样的蛋白质

  -SDS

  复合物在凝胶中的迁移率,受蛋白质原

  有电荷和形状的影响,而只是椭圆棒的长度,也就是蛋白质分子量的函数。

  lgMw = -bRm + K

  Mw

  :蛋白质的分子量;

  Rm

  :相对迁移率

  b

  : 斜率

  ;

  K

  :截距

  当条件一定时,

  b

  ,

  K

  均为常数,即此时

  lgMw

  与

  Rm

  的关系为线性关系,

  如以

  lgMw

  对

  mR

  作图,应得到一条直线,如上图。

  若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可获得一条标

  准曲线。未知蛋白质的相同条件下进行电泳,根据它的电泳迁移率即可在标准曲

  线上求得分子量。

  三、实验试剂及仪器

  1.

  实验试剂

  (

  1

  )

  30%

  丙烯酰胺(

  Acr

  ):

  Acr/

  甲叉双丙烯酰胺

  (Bis)=29:1

  (

  2

  )

  10%SDS

  (十二烷基磺酸钠)

  (

  3

  )

  10%

  过硫酸铵

  (AP)

  (

  4

  )

  TEMED

  (四甲基乙二胺)

  (

  5

  )

  2

  ×上样缓冲液:

  10%SDS

  (

  4ml

  )

  +

  巯基乙醇(

  1ml

  )

  +0.2%

  溴酚蓝(

  2ml +

  甘油

  2ml +1M pH6.8Tris-HCl

  (

  1ml

  )

  (

  6

  ) 浓缩胶缓冲液(

  1M Tris-Cl

  缓冲液

  pH6.8

  )

  (

  7

  ) 分离胶缓冲液(

  1.5M Tris-Cl

  缓冲液

  pH8.8

  )

  (

  8

  ) 电泳缓冲液

  : (SDS 20g

  ,

  Tris 60g,

  甘氨酸

  282.2g, pH8.3

  )加蒸馏水使其溶

  解后定容至

  2L

  。

  (

  9

  ) 固定液:乙醇

  500ml

  ,冰乙酸

  100ml

  混匀,

  (

  10

  ) 染液:考马斯亮蓝

  R250 1.25g

  ,甲醇

  225ml

  ,冰乙酸

  50ml

  ,蒸馏水定

  溶至

  1L

  。

  (

  11

  ) 脱液:冰乙酸

  80ml

  ,乙醇

  250ml

  ,加蒸馏水定容至

  1L

  。

  2.

  实验仪器

  (

  1

  )垂直板电泳装置、电泳仪、制胶架

  (

  2

  )移液枪、移液管

  (

  3

  ) 烧杯、培养皿

  (

  4

  ) 离心机

  四、实验步骤

  1.

  装板

  将垂直板型电泳装置内的板状凝胶模子取出,将玻璃片洗净、凉干、嵌入

  凹槽中,形成一个“夹心”凝胶腔,

  把装好的凝胶腔置于仰放的电上槽。将电泳槽、凝胶模子串成一体的垂

  直板型电泳装置,垂直放置在水平台面上,灌注胶液。

  2.

  分离胶的配制(

  12%

  )

  试剂

  体积

  H2O

  3.35

  (

  ml

  )

  凝胶贮备液

  2.5

  (

  ml

  )

  分离胶缓冲液

  (pH8.8)

  2.5

  (

  ml

  )

  10% SDS

  0.1

  (

  ml

  )

  TEMED

  5

  (

  ul

  )

  10%

  过硫酸铵

  50

  (

  ul

  )

  总体积

  10

  (

  ml

  )

  3.

  分离胶的灌注和聚合

  用移液管将所配制的分离胶缓冲液沿着凝胶腔的长玻璃板的内面缓缓注

  入,留出梳齿的齿高加

  1cm

  的空间以便灌注浓缩胶,然后加满蒸馏水。待分离胶凝固后,倒出蒸馏水,用滤纸吸干。

  4.

  浓缩胶的配制(

  5%

  )

  试剂

  体积

  H2O

  2.92

  (

  ml

  )

  凝胶贮备液

  0.8

  (

  ml

  )

  分离胶缓冲液

  (pH6.8)

  1.25

  (

  ml

  )

  10% SDS

  0.05

  (

  ml

  )

  TEMED

  5

  (

  ul

  )

  10%

  过硫酸铵

  25

  (

  ul

  )

  总体积

  5.05

  (

  ml

  )

  5.

  浓缩胶的灌注和聚合

  用移液管将所配制的浓缩胶缓冲液沿着凝胶腔的长玻璃板的内面缓缓

  加入,将梳子插入胶液顶部,放置室温下待其聚合。

  6.

  样品的准备

  在低分子量标准蛋白质和待测样品中分别加入适量还原缓冲液,放入沸水

  中加热

  3-5min

  ,取出冷至室温。

  7.

  加样

  加入电缓冲液,小心拔出梳齿,用微量注射器向凝胶梳孔内加样。同时加

  入

  Marker

  。

  8.

  电泳

  上槽接负,下槽接正,打开直流电源,刚开始时,电压控制在不高于

  100V

  ,

  电流恒定在

  10mA

  ;样品进入分离胶后,电压控制在不高于

  140V

  ,电流恒定在

  20mA

  。待指示剂染料(溴酚蓝)迁移至凝胶下沿

  1.0cm

  处停止电泳。

  9.

  染和脱

  电泳结束后,撬开玻璃板, 小心将胶取出,放入一大培养皿中。

  染:加入染液,置于摇床上染

  2h

  。

  脱:染完毕,倒出染液,加入脱液,置于摇床上脱,数小时更换

  一次脱液,直至背景清晰,拍照。

  10.

  相对分子质量的计算

  量出分离胶顶端距溴酚蓝间的距离

  (cm)

  以及各蛋白质样品区带中心与分离

  胶顶端的距离

  (cm)

  ,按下式计算相对迁移率

  :

  蛋白质样品距分离胶顶端迁移距离

  (cm)

  Rm =

  溴酚蓝区带中心距分离胶顶端距离

  (cm)

  以标准蛋白质分子量的对数对相对迁移率作图,得到标准曲线,根据待测样

  品相对迁移率,从标准曲线上计算出其分子量。

  五

  、

  实验结果与分析

  1.

  根据凝胶结果,依据标准蛋白条带,判断各个蛋白质样品区带大概分子量。

  2.

  测量样品中各种蛋白质分子的相对迁移率

  Rm

  值,然后根据标准曲线计算

  出各自分子量

  3.

  对实验操作及结果中不足之处进行分析。

  六、实验注意事项

  1

  .丙烯酰胺和双丙烯酰胺具有很强的神经毒性并容易吸附于皮肤,操作时应免

  避沾在脸、手等皮肤上。好戴一次性塑料手套操作。

  2

  .

  10%

  过硫酸铵现用现配,

  4

  ℃冰箱贮存不超过

  48

  小时。

  3

  .灌制凝胶时,应避免产生汽泡,因为汽泡会影响电泳分离效果。

  4.

  蛋白加样量要合适。加样量太少,条带不清晰

  ;

  加样量太多则泳道超载,条带

  过宽而重叠,甚至覆盖至相邻泳道。

  5

  .刚灌注分离胶混合溶液后,应在分离胶液面上加

  1-2cm

  高的水层,以阻隔空

  气。胶液面上加水层时要小心,缓缓叠加,以免冲坏凝胶的胶面。

  七、思考题

  1.

  在不连续体系

  SDS-PAGE

  中,当分离胶加完后,需在其上加一层水,为什么

  ?

  2.

  电缓冲液中甘氨酸的作用

  ?

  3.

  在不连续体系

  SDS-PAGE

  中,分离胶与浓缩胶中均含有

  TEMED

  和

  AP

  ,试述

  其作用

  ?

  4.

  样品液为何在加样前需在沸水中加热几分钟

  ?

  实验五 糖酵解中间产物的鉴定

  一、实验目的

  1

  .掌握糖酵解中间产物的鉴定方法和原理。

  2

  .熟悉通过酶的抑制作用调节代谢途径。

  3

  .了解使中间产物堆积的方法在研究中间代谢中的意义。

  二、 实验原理

  在细胞质中,一分子葡萄糖通过一系列反应转化为两分子丙酮酸,并伴随着

  ATP

  生成的一系列反应是有机体获得化学能的原始的途径,也是原核生物和真

  核生物糖类物质分解代谢的共同途径。利用碘乙酸对糖酵解过程中的

  3-

  磷酸甘油

  醛脱氢酶特异地且不可逆地抑制作用,使

  3-

  磷酸甘油醛向前变化而积累。硫

  酸肼作为稳定剂,用来保护

  3-

  磷酸苷油醛使其不自发分解。然后用

  2,4-

  二硝基苯

  肼与

  3-

  磷酸甘油醛在碱性条件下形成

  2,4-

  二硝基苯肼

  -

  丙糖的棕复合物,其棕

  程度与

  3-

  磷酸甘油醛含量成正比。从而明糖的分解代谢过程中,含有

  3-

  磷

  酸甘油醛的中间产物。

  三、实验试剂及器材

  1.实验材料

  新鲜酵母

  2. 仪器:

  离心管、移液枪;恒温水浴;离心机

  3.试剂:

  1

  )

  2,4-

  二硝基苯肼

  : 0.1 g 2,4-

  二硝基苯肼溶于水

  100 ml 2 mol/L

  盐酸溶液中,储

  于棕瓶中备用。

  2

  )

  0.56 mol/L

  硫酸肼溶液

  :

  称取

  7.28 g

  硫酸肼溶于

  50 ml

  水中,这时不会溶

  解,当加入

  NaOH

  使

  pH

  值达

  7.4

  时则溶解。

  3

  )

  5%

  葡萄糖溶液。

  4

  )

  10%

  三氯乙酸溶液。

  5

  )

  75 mol/L NaOH

  溶液。

  6

  )

  0.002 mol/L

  碘乙酸溶液。

  四、实验步骤

  1.取小烧杯 3 支,编号,分别加入新鲜酵母 0.3 g,并按表 1 分别加入各试剂,

  混匀。

  2.将各杯混合物分别放入 37℃水浴中保温 1.0 小时,观察发酵管产生气泡的量

  有何不同。

  3.在 2 号和 3 号杯中按表 2 补加各试剂,摇匀后放 5-10 分钟

  4. 将三支离心管中的上清液分别进行离心或者过滤,3000rpm, 3min。

  5.取 3 支试管,分别加入上述滤液 0.5 ml,并按表 3 加入试剂和处理。

  (取上清液 0.5 ml,加入 0.75 mol/L NaOH 0.5 ml,混匀后在 37℃水浴保温

  10 分钟,然后分别向上述试管中加入 0.5 ml 2,4-二硝基苯肼,混匀后在 37℃

  水浴保温 10 分钟,然后加入 0.75 mol/L NaOH 3.5 ml,观察实验结果。)

  表 1 糖酵解中间产物的鉴定——发酵产生气泡观察

  编号

  5%

  葡萄糖溶

  液 (

  ml

  )

  10%

  三氯乙

  酸(

  ml

  )

  碘乙酸

  (

  ml

  )

  硫酸肼

  (

  ml

  )

  发泡量

  1

  10

  (

  ml

  )

  2

  1

  1

  2

  10

  (

  ml

  )

  0

  1

  1

  3

  10

  (

  ml

  )

  0

  0

  0

  表 2

  补加试剂

  编号

  10%

  三氯乙酸

  (

  ml

  )

  碘乙酸

  (

  ml

  )

  硫酸肼

  (

  ml

  )

  发泡量

  2

  2

  0

  0

  3

  2

  1

  1

  表 3 糖酵解中间产物的鉴定——二硝基苯肼反应

  五、结果与分析

  实验中哪一发酵管生成的气泡多?哪一管生成的颜深? 为什么?

  描述观察到得实验现象并对实验结果加以分析。包括保温后的气泡量及的

  显效果。

  六、注意事项

  1. 本实验虽为定性鉴定,但量取体积等人要求相对准确 ;

  2. 注意试剂的添加顺序,编号不要弄混 ;

  3. 每步反应前注意要充分混匀 。

  七、思考与讨论

  1. 实验鉴定的是哪种中间产物?

  2. 实验中三氯乙酸、碘乙酸、硫酸肼三种试剂分别起什么作用?

  3. 实验中的气泡是什么气体? 如何产生的?

  编号

  滤液

  (ml)

  0.75 mol/L

  NaOH(ml)

  摇

  匀

  ,

  室

  温

  放

  置

  5

  分

  钟

  2,4-二硝基

  苯肼 (ml)

  摇

  匀

  ,

  室

  温

  放

  置

  5

  分

  钟

  0.75 mol/L

  NaOH(ml)

  1

  0.5

  0.5

  0.5

  3.5

  2

  0.5

  0.5

  0.5

  3.5

  3

  0.5

  0.5

  0.5

  3.5

  实验六 荧光分光光度法测定维生素 B2 的含量

  一、实验目的

  1.学荧光分光光度法测定多维葡萄糖粉中维生素 B2 的分析原理;

  2.掌握荧光分光光度计的使用方法;

  3.了解分子荧光产生的机理.

  二、 实验原理

  维生素 B2 易溶于水而不溶于乙醚等有机溶剂,在中性或酸性溶液中稳定,光

  照易分解,对热稳定。 维生素 B2 在碱性溶液中经光线照射会发生分解而转化为

  光黄素,光黄素的荧光比核黄素的荧光强的多,故测 VB2 的荧光时溶液要控制在

  酸性范围内,且在避光条件下进行。

  核黄素

  (V

  B2

  )

  光黄素

  多维葡萄糖中含有维生素 B1、B2、C、D2 及葡萄糖,其中维生素 C 和葡萄糖

  在水溶液中不发荧光,维生素 B1 本身无荧光,在碱性溶液中用铁氰化钾氧化后

  才产生荧光,维生素 D2 用二氯乙酸处理后才有荧光,他们都不干扰维生素 B2

  的测定。

  维生素 B2 溶液在 430~440 nm 蓝光的照射下,发出绿荧光,其峰值波长为

  545 nm。VB2 的荧光在 pH=6~7 时强,在 pH=11 时消失。

  三、实验试剂及器材

  1. 试剂:

  100

  μ

  g/mlVB2 标准溶液(4%冰醋酸配制,置阴暗处保存);冰乙酸;

  多维葡萄糖粉试样

  2. 器材:

  岛津 RF5301PC 荧光分光光度计 ;微量移液器 ;容量瓶;石英比皿

  四、实验步骤

  1、打开氙灯,再打开主机,然后打开计算机启动工作站并初始化仪器。

  2、仪器初始化完毕后,在工作界面上选择测量项目

  设置适当的仪器参数:激发波长 Ex= 435 nm,发射波长 Em=545nm。

  3、标准曲线测定,样品测定。

  4、制作标准曲线,由标准曲线计算样品中维生素 B2 的含量。

  5、 退出主程序,关闭计算机,先关主机,关氙灯。

  五、结果与分析

  1、 原始数据:标准曲线以及样本的荧光值。

  测量 1-6 号标准曲线荧光值:VB2 的含量:0.0ug/ml、0.1ug/ml、0.2ug/ml、

  0.3ug/ml、0.4ug/ml、0.5ug/ml。

  测量 7 号样品荧光值

  2、绘制出标准曲线:要求规范作图

  铅笔作图;

  横、纵坐标名称及单位;

  日期、作者 、曲线名称;

  曲线上体现出待测样品的荧光值及浓度值。

  3、计算:样品中维生素 B2 的量。

  要求: 写出公式、代入数据、写出结果。

  实验八 pH 值和温度对酶促反应速度的影响

  一、实验目的

  1

  .了解不同

  pH

  和温度对淀粉水解和唾液淀粉酶活性的影响。

  2

  .学会测定酶适

  pH

  和温度的方法。

  二、实验原理

  酶都是蛋白质,它的活性受环境 pH 的影响为显著。通常各种酶只有在一

  定的 pH 范围内才表现它的活性,一种酶表现其高活性时 pH 的值,称为该酶的适 pH。本实验以唾液淀粉酶在不同的温度和 pH 下对淀粉的作用为例观察温度

  和 pH 对酶活性的影响,淀粉的水解程度用其与碘液的呈反应加以区别。

  三、实验试剂及器材

  1. 试剂:

  淀粉;碘;碘化钾;磷酸氢二钠;柠檬酸

  2. 器材:

  试管 吸量管 试管架 吸耳球

  四、实验步骤

  1. 溶液配制:

  0.5%淀粉溶液(含 0.3%氯化钠)(新鲜配置),碘-碘化钾溶液(4 g 碘及碘化

  钾 6 g 溶于 100 ml 蒸馏水中,于棕瓶中保存),0.2 mol/L 磷酸氢二钠溶液,

  0.1 mol/L 柠檬酸溶液。

  2. 样品收集

  每人取一个干净的小烧杯,先用自来水漱口,将口腔内的食物残渣清除干净,

  然后去蒸馏水约 20ml 含入口中,做咀嚼动作 3-4min,以分泌较多的唾液。将

  口腔中的蒸馏水吐入干净的小烧杯中,此即为稀释的唾液淀粉酶液。

  3. pH 对酶活性的影响

  (

  1)缓冲液的配制

  编号

  0.2mol/L

  磷酸氢二纳(

  ml

  )

  0.1mol/L

  柠檬酸(

  ml

  )

  缓冲液(

  ml

  )

  1

  5.15

  4.85

  5.0

  2

  6.16

  3.39

  6.2

  3

  7.72

  2.28

  6.8

  4

  9.08

  0.92

  7.4

  5

  9.72

  0.28

  8.0

  (

  2)底物的准备

  6 支干燥的试管编号,依次加入不同 pH 的缓冲液各 3 ml,第 6 号试管与第

  3 号相同。再向每个试管中添加 0.5%淀粉溶液 2 ml,摇匀。

  (

  3)酶促反应时间测定

  向第 6 号试管加入稀释 100 倍的唾液 2 ml,摇匀后放入 37 ℃恒温水浴中保

  温。每分钟取 1 滴混合液于离心管中或反应板上,加 1 滴碘化钾-碘溶液,呈橙

  黄时取出试管,记录时间。

  (

  4)适 pH 测定

  以 1 min 的间隔,依次向 1~5 号试管中加入稀释 200 倍的唾液 2 ml,摇匀,

  同样以 1 min 间隔,将 5 只试管放入 37 ℃恒温水浴中保温,反应至所需时间。

  依次取出,立即加入碘化钾-碘液 2 滴,充分摇匀。观察颜,可看出不同 pH

  值时淀粉被水解的程度,不同 pH 值对唾液淀粉酶活性的影响,并确定其适 pH。

  4. 温度对酶活性的影响

  (1)取三支试管按下表操作:

  试剂

  管号

  1

  2

  3

  1%

  淀粉溶液(

  ml

  )

  1

  1

  1

  放置条件

  沸水浴

  37

  ℃

  冰浴

  稀释唾液(滴)

  4

  4

  4

  分别按上述条件继续放置 10 min。

  (2) 从三支试管中取出溶液 1 滴于离心管中或反应板上,加上 1 滴碘液,观察呈

  现象,记录结果并解释其原因。

  五、注意事项

  1. 各管反应及操作应在同一水平;

  2. 每管间隔相同的时间加样和终止反应以各管反应时间相同。

  附件:生化实验.pdf

  废钼回收的环保意义与政策支持

  钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。

  泉州高价废钼回收价格多少

  用途:

  1,钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。

  低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。 HI98130 不锈钢中加入钼,能改善钢的耐腐蚀性。

  在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种耐高温部件。

  金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。

  二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂。钼是植物所的微量元素之一,在农业上用作微量元素化肥。

  2,钼在电子行业有可能取代石墨烯

  美国加州纳米技术研究院(简称CNSI)成功使用MoS2(辉钼,二硫化钼)制造出了辉钼基柔性微处理芯片,这个MoS2为基础的微芯片只有同等硅基芯片的20%大小,功耗低,辉钼制成的晶体管在待机情况下的功耗为硅晶体管的十万分之一,而且比同等尺寸的石墨烯电路更加廉价。

  而大的变化是其电路有很强的柔性,薄,可以附着在人体皮肤。 HI8733辉钼是未来取代硅基芯片竞争者。领导研究的安德拉斯&midDOt;基什教授表示,辉钼是良好的下一代半导体材料,在制造超小型晶体管、发光二管和太阳能电池方面具有很广阔的前景。

  同硅和石墨烯相比,辉钼的优势之一是体积更小,辉钼单分子层是二维的,而硅是一种三维材料。在一张0.65纳米厚的辉钼薄膜上,电子运动和在两纳米厚的硅薄膜上一样容易,辉钼矿是可以被加工到只有3 个原子厚的!

  辉钼所具有的机械特性也使得它受到关注,有可能成为一种用于弹性电子装置(例如弹性薄层晶片)中的材料。 可以用在制造可卷曲的电脑或是能够贴在皮肤上的装置。甚至可以植入人体。

  3,纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。

  合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。

  4,钼在其它合金领域及化工领域的应用也不断扩大。HI98128例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域。

  由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。

  扩展资料:

  钼(mù)为人体及动植物的微量元素。为银白金属,硬而坚韧。人体各种组织都含钼,在人体内总量为9mg,肝、肾中含量高。

  钼是一种过渡元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。在氧化的形式下,钼很可能是处于+6价状态。

  虽然在电子转移期间它也很可能首先还原为+5价状态。但是在还原后的酶中也曾发现过钼的其他氧化状态。钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。

  钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。

  在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级合金,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。

  金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。

  在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。

  钼的化合物在农业肥料中也有广泛的用途。

  一、钼矿原料特点

  钼在地壳中的元素丰度约为1×10-6,在岩浆岩中以花岗岩类含钼高,达2×10-6。钼在地球化学分类中,属于过渡性的亲铁元素。在内生成矿作用中,钼主要与硫结合,生成辉钼矿。

  辉钼矿(MoS2)是自然界中已知的30余种含钼矿物中分布广并具有现实工业价值的钼矿物。其他较常见钼的含钼矿物还有铁钼华([Fe3+(MoO4)8·8H2O]),钼酸钙矿(CaMoO4),彩钼铅矿(PbMoO4),胶硫钼矿镁(MoS2),蓝钼矿(Mo3O8·nH2O)等。

  辉钼矿存在着多型,实验表明,其多型的出现与形成温度有关,2H型的辉钼矿形成温度高于3R型的辉钼矿。温度由低到高形成非晶质MoS2→胶体MoS2→3MoS2→2HMoS2。测温资料说明辉钼矿形成温度有较宽的区间,可自相当高温直到相对较低的温度,而大量形成于高至中温阶段。在热液作用下,MoS2在较酸性条件下沉淀,即辉钼矿在酸性条件下为稳定,当溶液转向中性时,钼变为可溶的硫代钼酸盐和钼酸盐而再活动。在低温和常温条件下,Mo4+在强酸性还原环境中生成胶硫钼矿(MoS2),它氧化后的产物是蓝钼矿(Mo3O8·nH2O)。外生作用中,钼呈Mo6+,具较强的活动性。它与铀相似,在接近中性或偏碱性的氧化与还原的过渡环境中稳定,由此生成多种含铀的钼酸盐矿物,如钼铀矿[(UO2)MoO4·4H2O],钼钙铀矿[Ca(UO2)3(MoO4)·(OH)2·11H2O]等。铁钼华[Fe2(MoO4)3·nH2O]是硫化矿石在酸性条件下(pH=3~5)形成的常见矿物。彩钼铅矿是含钼的铅锌矿在中性条件下的产物。

  铼与钼的离子半径相近,故经常置换钼而富集于辉钼矿中,成为工业用铼的主要来源。辉钼矿中的铼含量往往与辉钼矿中3R型含量及成矿溶液中的铼含量有关。钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级合金,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。钼的化合物在农业肥料中也有广泛的用途。一、钼矿原料特点钼在地壳中的元素丰度约为1×10-6,在岩浆岩中以花岗岩类含钼高,达2×10-6。钼在地球化学分类中,属于过渡性的亲铁元素。在内生成矿作用中,钼主要与硫结合,生成辉钼矿。辉钼矿(MoS2)是自然界中已知的30余种含钼矿物中分布广并总氮具有现实工业价值的钼矿物。其他较常见的含钼矿物还有铁钼华([Fe3+(MoO4)8·8H2O]),钼酸钙矿(CaMoO4),彩钼铅矿(PbMoO4),胶硫钼矿(MoS2),蓝钼矿(Mo3O8·nH2O)等。辉钼矿存在着多型,实验表明,其多型的出现与形成温度有关,2H型的辉钼矿形成温度高于3R型的辉钼矿。温度由低到高形成非晶质MoS2→胶体MoS2→3MoS2→2HMoS2。测温资料说明辉钼矿形成温度有较宽的区间,可自相当高温直到相对较低的温度,而大量形成于高至中温阶段。在热液作用下,MoS2在较酸性条件下沉淀,即辉钼矿在酸性条件下为稳定,当溶液转向中性时,钼变为可溶的硫代钼酸盐和钼酸盐而再活动。在低温和常温条件下,Mo4+在强酸性还原环境中生成胶硫钼矿(MoS2),它氧化后的产物是蓝钼矿(Mo3O8·nH2O)。外生作用中,钼呈Mo6+,具较强的活动性。它与铀相似,在接近中性或偏碱性的氧化与还原的过渡环境中稳定,由此生成多种含铀的钼酸盐矿物,如钼铀矿[(UO2)MoO4·4H2O],钼钙铀矿[Ca(UO2)3(MoO4)·(OH)2·11H2O]等。铁钼华[Fe2(MoO4)3·nH2O]是硫化矿石在酸性条件下(pH=3~5)形成的常见矿物。彩钼铅矿是含钼的铅锌矿在中性条件下的产物。铼与钼的离子半径相近,故经常置换钼而富集于辉钼矿中,成为工业用铼的主要来源。辉钼矿中的铼含量往往与辉钼矿中3R型含量及成矿溶液中的铼含量有关。

  1. 废水的主要物理特性有哪些?

  ⑴温度:废水的温度对废水处理过程的影响很大,温度的高低直接影响微生物活性。一般城市污水处理厂的水温为10~25摄氏度之间,工业废水温度的高低与排放废水的生产工艺过程有关。

  ⑵颜:废水的颜取决于水中溶解性物质、悬浮物或胶体物质的含量。新鲜的城市污水一般是暗灰,如果呈厌氧状态,颜会变深、呈黑褐。工业废水的颜多种多样,造纸废水一般为黑,酒糟废水为黄褐,而电镀废水蓝绿。

  ⑶气味:废水的气味是由生活污水或工业废水中的污染物引起的,通过闻气味可以直接判断废水的大致成分。新鲜的城市污水有一股发霉的气味,如果出现臭鸡蛋味,往往表明污水已经厌氧发酵产生了硫化氢气体,运行人员应当严格遵守防毒规定进行操作。

  ⑷浊度:浊度是描述废水中悬浮颗粒的数量的,一般可用浊度仪来检测,但浊度不能直接代替悬浮固体的浓度,因为颜对浊度的检测有干扰作用。

  ⑸电导率:废水中的电导率一般表示水中无机离子的数量,其与来水中溶解性无机物质的浓度紧密相关,如果电导率急剧上升,往往是有异常工业废水排入的迹象。

  ⑹固体物质:废水中固体物质的形式(SS、DS等)和浓度反映了废水的性质,对控制处理过程也是有用的。

  ⑺可沉淀性:废水中的杂质可分为溶解态、胶体态、游离态和可沉淀态四种,前三种是不可沉淀的,可沉淀态杂质一般表示在30min或1h内沉淀下来的物质。

  2. 废水的化学特性有哪些?

  废水的化学性很多,可以分为四类:①一般性水质,如pH值、硬度、碱度、余氯、各种离子等;②有机物含量,生物化学需氧量BOD5、化学需氧量CODCr、总需氧量TOD和总有机碳TOC等;③植物性营养物质含量,如氨氮、硝酸盐氮、盐氮、磷酸盐等;④有毒物质,如石油类、重金属、氰化物、硫化物、多环芳烃、各种氯代有机物和各种农等。

  在不同的污水处理厂,要根据来水中污染物种类和数量的不同确定适合各自水质特点的分析项目。

  3. 一般污水处理厂需要分析的主要化学有哪些?

  一般污水处理厂需要分析的主要化学如下:

  ⑴pH值:pH值可以通过测量水中的氢离子浓度来确定。pH值对废水的生物处理影响很大,硝化反应对pH值更加敏感。城市污水的pH值一般在6~8之间,如果超出这一范围,往往表明有大量工业废水排入。对于含有酸性物质或碱性物质的工业废水,在进入生物处理系统之前需要进行中和处理。

  ⑵碱度:碱度能反应出废水在处理过程中所具有的对酸的缓冲能力,如果废水具有相对高的碱度,就可以对pH值的变化起到缓冲作用,使pH值相对稳定。碱度表示水样中与强酸中的氢离子结合的物质的含量,碱度的大小可用水样在滴定过程中消耗的强酸量来测定。

  ⑶CODCr: CODCr是废水中能被强氧化剂重铬酸钾所氧化的有机物的数量,以氧的mg/L计。

  ⑷BOD5:BOD5是废水中有机物被生物降解所需要的氧量,是衡量废水可生化性的。

  ⑸氮:在污水处理厂中,氮的变化和含量分布为工艺提供参数。污水处理厂进水中的有机氮和氨氮含量一般较高,而硝酸盐氮和盐氮含量一般较低。初沉池氨氮的增加一般表明沉淀污泥开始厌氧,而二沉池硝酸氮和氮的增加,表明硝化作用已经发生。生活污水中氮的含量一般为20~80mg/L,其中有机氮8~35mg/L,氨氮为12~50mg/L,硝酸氮和氮的含量很低。工业废水中有机氮、氨氮、硝酸氮和氮含量因水而异,有的工业废水中氮的含量低,在利用生物法处理时,需要投加氮肥以补充微生物所需的氮含量,而出水中氮的含量过高时,又需要进行脱氮处理,以受纳水体出现富营养化现象。

  ⑹磷:生物污水中磷的含量一般为2~20mg/L,其中有机磷1~5mg/L,无机磷为1~15mg/L。工业废水中磷的含量差别很大,有的工业废水中磷的含量低,在利用生物法处理时,需要投加磷肥以补充微生物所需的磷含量,而出水中磷的含量过高时,又需要进行除磷处理,以受纳水体出现富营养化现象。

  ⑺石油类:废水中的油大多是不溶于水的,且浮在水面上。进水中的油会影响充氧效果、导致活性污泥中的微生物活性降低,进入到生物处理构筑物的混合污水含油浓度通常不能大于30~50mg/L。

  ⑻重金属:废水中的重金属主要来自工业废水,其毒性很大。污水处理厂通常没有较好的处理方法,通常需要在排放车间内进行就地处理达到国家排放标准后再进入排水系统,如果污水处理厂出水中重金属含量上升,往往说明预处理出现了问题。

  ⑼硫化物:水中的硫化物超过0.5mg/L后,就带有令人厌恶的臭鸡蛋味,且有腐蚀性,有时甚至会引起硫化氢中毒事件。

  ⑽余氯:使用氯时,为在输送过程中微生物的繁殖,出水中余氯(包括游离性余氯和化合性余氯)是工艺的控制,一般不超过0.3mg/L。

  4. 废水的微生物特性有哪些?

  废水的生物性有细菌总数、大肠菌群数、各种病原微生物和等。医院、肉类联合加工企业等废水排放前进行处理,国家有关污水排放标准对此已经作出了规定。污水处理厂一般不对进水中的生物性进行检测和控制,但对处理后的污水排放之前要进行处理,以控制处理污水对受纳水体的污染。如果对二级生物处理出水再进行深度处理后回用,就更需要在回用前进行处理。

  ⑴细菌总数:细菌总数可作为评价水质清洁程度和考核水净化效果的,细菌总数增多说明水的效果较差,但不能直接说明对人体的危害性有多大,结合粪大肠菌群数来判断水质对人体的程度。

  ⑵大肠菌群数:水中大肠菌群数可间接地表明水中含有肠道病菌(如伤寒、痢疾、霍乱等)存在的可能性,因此作为人体健康的卫生。污水回用做杂用水或景观用水时,就有可能与人体接触,此时检测其中粪大肠菌群数。

  ⑶各种病原微生物和:许多性疾病都可以通过水传染,比如引起肝炎、小儿麻痹症等疾病的存在于人体的肠道中,通过病人粪便进入生活污水系统,再排入污水处理厂。污水处理工艺对这些的去除作用有限,在将处理后污水排放时,如果受纳水体的使用价值对这些病原微生物和有要求时,就需要并进行检测。

  5. 反映水中有机物含量的常用有哪些?

  有机物进入水体后,将在微生物的作用下进行氧化分解,使水中的溶解氧逐渐减少。当氧化作用进行的太快、而水体不能及时从大气中吸收的氧来补充消耗的氧时,水中的溶解氧可能降得很低(如低于3~4mg/L),进而影响水中生物正常生长的需要。当水中的溶解氧耗尽后,有机物开始厌氧消化,发生臭气,影响环境卫生。

  由于污水中所含的有机物往往是多种组分的其复杂的混合体,因而一一分别测定各种组分的定量数值。实际上常用一些综合,间接表征水中有机物含量的多少。表示水中有机物含量的综合有两类,一类是以与水中有机物量相当的需氧量(O2)表示的,如生化需氧量BOD、化学需氧量COD和总需氧量TOD等;另一类是以碳(C)表示的,如总有机碳TOC。对于同一种污水来讲,这几种的数值一般是不同的,按数值大小的排列顺序为TOD>CODCr>BOD5>TOC

  6. 什么是总有机碳?

  总有机碳TOC(英文Total Organic Carbon的简写)是间接表示水中有机物含量的一种综合,其显示的数据是污水中有机物的总含碳量,单位以碳(C)的mg/L来表示。TOC的测定原理是先将水样酸化,利用氮气吹脱水样中的碳酸盐以排除干扰,然后向氧含量已知的氧气流中注入一定量的水样,并将其送入以铂钢为触媒的石英燃烧管中,在900oC~950oC的高温下燃烧,用非散红外气体分析仪测定燃烧过程中产生的CO2量,再折算出其中的含碳量,就是总有机碳TOC(详见GB13193--91)。测定时间只需要几分钟。

  一般城市污水的TOC可达200mg/L,工业废水的TOC范围较宽,高的可达几万mg/L,污水经过二级生物处理后的TOC一般<50mg/L,较清洁的河水TOC一般<10mg/L。在污水处理的研究中有用TOC作为污水有机物的,但在常规污水处理运行中一般不分析这个。

  7. 什么是总需氧量?

  总需氧量TOD(英文Total Oxygen Demand的简写)是指水中的还原性物质(主要是有机物)在高温下燃烧后变成稳定的氧化物时所需要的氧量,结果以mg/L计。TOD值可以反映出水中几乎有机物(包括碳C、氢H、氧O、氮N、磷P、硫S等成分)经燃烧后变成CO2、H2O、NOx、SO2等时所需要消耗的氧量。可见TOD值一般大于CODCr值。目前我国尚未将TOD纳入水质标准,只是在污水处理的理论研究中应用。TOD的测定原理是向氧含量已知的氧气流中注入一定量的水样,并将其送入以铂钢为触媒的石英燃烧管中,在900oC的高温下瞬间燃烧,水样中的有机物即被氧化,消耗掉氧气流中的氧。氧气流中原有氧量减去剩余氧量就是总需氧量TOD。氧气流中的氧量可以用电测定,因而TOD的测定只需几min。

  8. 什么是生化需氧量?

  生化需氧量全称为生物化学需氧量,英文是Biochemical Oxygen Demand,简写为BOD,它表示在温度为20oC和有氧的条件下,由于好氧微生物分解水中有机物的生物化学氧化过程中消耗的溶解氧量,也就是水中可生物降解有机物稳定化所需要的氧量,单位为mg/L。BOD不仅包括水中好氧微生物的增长繁殖或呼吸作用所消耗的氧量,还包括了硫化物、亚铁等还原性无机物所耗用的氧量,但这一部分的所占比例通常很小。因此,BOD值越大,说明水中的有机物含量越多。

  在好氧条件下,微生物分解有机物分为含碳有机物氧化阶段和含氮有机物的硝化阶段两个过程。在20oC的自然条件下,有机物氧化到硝化阶段、即实现分解稳定所需时间在100d以上,但实际上常用20oC时20d的生化需氧量BOD20近似地代表生化需氧量。生产应用中仍嫌20d的时间太长,一般采用20oC时5d的生化需氧量BOD5作为衡量污水有机物含量的。经验表明,生活污水和各种生产污水的BOD5约为生化需氧量BOD20的70~80%。

  BOD5是确定污水处理厂负荷的一个重要参数,可用BOD5值计算废水中有机物氧化所需要的氧量。含碳有机物稳定化所需要的氧量可称为碳类BOD5,如果进一步氧化,就可以发生硝化反应,硝化菌将氨氮转化为硝酸盐氮和盐氮时所需要的氧量可成为硝化BOD5。一般的二级污水处理厂只能去除碳类BOD5,而不去除硝化类BOD5。由于在去除碳类BOD5的生物处理过程中,硝化反应不可避免地要发生,因此使得BOD5的测定值比实际有机物的耗氧量要高一些。

  BOD测定时间较长,常用的BOD5测定需要5d时间,因此一般只能用于工艺效果评价和长周期的工艺调控。对于特定的污水处理场,可以建立BOD5和CODCr的相关关系,用CODCr粗略估计BOD5值来指导处理工艺的调整。

  9. 什么是化学需氧量?

  化学需氧量的英文是Chemical Oxygen Demand,它是指在一定条件下,水中有机物与强氧化剂(如重铬酸钾、高锰酸钾等)作用所消耗的氧化剂折合成氧的量,以氧的mg/L计。

  当用重铬酸钾作为氧化剂时,水中有机物几乎可以(90%~95%)被氧化,此时所消耗的氧化剂折合成氧的量即是通常所称的化学需氧量,常简写为CODCr(具体分析方法见GB 11914--89)。污水的CODCr值不仅包含了水中的几乎有机物被氧化的耗氧量,同时还包括了水中盐、亚铁盐、硫化物等还原性无机物被氧化的耗氧量。

  10. 什么是高锰酸钾指数(耗氧量)?

  用高锰酸钾作为氧化剂测得的化学需氧量被称为高锰酸钾指数(具体分析方法见GB 11892--89)或耗氧量,英文简写为CODMn或OC,单位为mg/L。

  由于高锰酸钾的氧化能力比重铬酸钾要弱,同一水样的高锰酸钾指数的具体值CODMn一般都低于其CODCr值,即CODMn只能表示水中容易氧化的有机物或无机物的含量。因此,我国及欧美等许多国家都把CODCr作为控制有机物污染的综合性,而只将高锰酸钾指数CODMn作为评价监测海水、河流、湖泊等地表水体或饮用水有机物含量的一种。

  由于高锰酸钾对苯、纤维素、有机酸类和氨基酸类等有机物几乎没有氧化作用,而重铬酸钾对这些有机物差不多氧化,因此使用CODCr作为表示废水的污染程度和控制污水处理过程的参数更为合适。但由于高锰酸钾指数CODMn测定简单、迅速,在对较清净的地表水进行水质评价时仍使用CODMn来表示其受到的污染程度,即其中的有机物数量。

  11. 如何通过分析废水的BOD5与CODCr来判定废水的可生化性?

  当水中含有有毒有机物时,一般不能准确测定废水中的BOD5值,而采用CODCr值可以较准确地测定水中有机物的含量,但CODCr值又不能区别可生物降解和不可生物降解的物质。人们惯于利用测定污水的BOD5/CODCr来判断其可生化性,一般认为,污水的BOD5/CODCr大于0.3就可以利用生物降解法进行处理,如果污水的BOD5/CODCr低于0.2,则只能考虑采用其他方法进行处理。

  12. BOD5与CODCr的关系如何?

  生化需氧量BOD5表示的是污水中有机污染物在进行生化分解过程中所需要的氧量,能够直接从生物化学意义上说明问题,因此BOD5不仅仅是一个重要的水质,更是污水生物处理过程中的一个为重要的控制参数。但是,BOD5在使用上也受到一定限制,一是测定时间较长(5d),不能及时反映和指导污水处理装置的运行,二是因为有些生产污水不具备微生物生长繁殖的条件(如存在有毒有机物),无法测定其BOD5值。

  化学需氧量CODCr则反映了污水中几乎有机物和还原性无机物的含量,只是不能象生化需氧量BOD5那样直接从生化意义上说明问题。也就是说,化验污水的化学需氧量CODCr值可以较准确地测定水中有机物含量,但化学需氧量CODCr不能区别可生物降解有机物和不可生物降解的有机物。

  化学需氧量CODCr值一般高于生化需氧量BOD5值,其间的差值能够约略地反映污水中不能被微生物降解的有机物含量。对于污染物成份相对固定的污水来说,CODCr与BOD5之间一般都有一定的比例关系,可以互相推算。加上CODCr的测定所用时间较少,按回流2h的国家标准方法来化验,从取样到出结果,只需要3~4h,而测定BOD5值却需要5d时间,因此在实际污水处理运行管理中,常利用CODCr作为控制。

  为了尽快指导生产运行,有的污水处理场还制定了回流5min测定CODCr的企业标准,测得结果虽然与国家标准方法有一定误差,但由于误差为系统误差,连续监测的结果可以正确地反应水质的实际变化趋势,测定时间却可以减少到1h以内,对及时调整污水处理运行参数和水质突变对污水处理系统造成冲击,提供了时间上的,也就是说提高了污水处理装置出水的合格率。

  13. CODCr测定的注意事项有哪些?

  CODCr测定是以重铬酸钾为氧化剂,在酸性条件下利用硫酸银做催化剂,沸腾回流2h,通过测定重铬酸钾的消耗量,再折算成的氧消耗量(GB11914--89)。CODCr测定中使用了重铬酸钾、硫酸汞和浓硫酸等品,或有剧毒或有强烈的腐蚀性,而且需要加热回流,因此操作在通风橱中进行,并且要十分精心,废液回收并单独处理。

  为了促使水中还原性物质的充分氧化,需要加入硫酸银做催化剂,而为使硫酸银分布均匀,应将硫酸银溶于浓硫酸中,待其溶解后(约需2d)再随起酸化作用的硫酸一起加入锥形瓶中。国家标准化验方法规定每测定一次CODCr(20mL水样)要加入0.4gAg2SO4/30mLH2SO4,但有关资料表明,对于一般的水样,投加0.3gAg2SO4/30mLH2SO4是足量的,没有必要使用更多的硫酸银。对经常测定的污水水样,如果有充分的数据对照,还可以适当减少硫酸银的用量。

  CODCr是污水中有机物含量的,因此测定时一定要将氯离子和无机还原物质的耗氧除去。对于Fe2+、S2-等无机还原物的干扰,可根据其测定的浓度,由理论需氧量对已测的CODCr值加以校正。对氯离子Cl-1的干扰,一般采用硫酸汞去除,其加入量为每20mL水样0.4gHgSO4时,可去除2000mg/L氯离子的干扰。对经常测定的各种成份相对固定的污水水样,如果氯离子含量较少或使用稀释倍数较高的水样测定,可以适当减少硫酸汞的用量。

  14. 硫酸银的催化机理是什么?

  硫酸银的催化机理是,有机物中含羟基的化合物在强酸性介质中首先被重铬酸钾氧化成羧酸,由羟基有机物生成的脂肪酸与硫酸银作用生成脂肪酸银,由于银原子的作用,使羧基很容易地生成二氧化碳和水,同时生成新的脂肪酸银,但其碳原子要比前者少一个,如此循环往复,逐步使有机物氧化成二氧化碳和水。

  15. BOD5测定的注意事项有哪些?

  BOD5测定通常采用标准稀释与接种法(GB 7488--87),其操作为,经中和及除去毒性物质并经稀释后的水样(必要时加入适量含好氧微生物的接种液)置入培养瓶中,于在20oC暗处培养5d,通过分别测定培养前后水样中溶解氧的含量,来计算出5d内的耗氧量,再根据稀释倍数求得其BOD5。

  BOD5的测定是生物作用和化学作用的共同结果,严格按照操作规范进行,变更一个条件,都将影响测定结果的准确性和可比性。影响BOD5测定的条件包括pH值、温度、微生物种类和数量、无机盐含量、溶解氧和稀释倍数等。

  化验BOD5的水样充满并密封于取样瓶中,在2~5oC的冷藏箱内保存到分析时。一般应在采样后6h内进行检验,在情况下,水样的贮存时间不能超过24h。

  测定工业废水的BOD5时,由于工业废水通常溶解氧含量较少而且成分多为可生化降解的有机物,为保持培养瓶内的好氧状态,将水样稀释(或接种稀释),这一操作是标准稀释法的大特征。为确保测得结果的性,对于稀释后的水样培养5d的耗氧量大于2mg/L,残留溶解氧大于1mg/L。

  投入接种液是为了有一定量的微生物降解水中的有机物,接种液的量以使5日耗氧0.1mg/L以下为佳。使用由金属蒸馏器制备的蒸馏水作为稀释水时,应注意检查其中的金属离子含量,以避免因此抑制微生物繁殖和代谢。为确保稀释水中溶解氧接近饱和,必要时可通入净化空气或纯氧,然后于在20oC培养箱中放置一定时间,使之与空气中氧分压达到平衡。

  稀释倍数的确定是以培养5日耗氧大于2mg/L,剩余溶解氧大于1mg/L为原则。稀释倍数过大或过小,都会导致检验失败。而且由于BOD5分析周期较长,一旦出现类似情况,就无法以原样补测。初测某一工业废水的BOD5时,可以首先测定其CODCr,然后查阅参考已有的水质类似的废水的有关监测数据,初步确定待测水样BOD5/CODCr值,据此推算出BOD5的大致范围和确定稀释倍数。

  对含有抑制或杀灭好氧微生物代谢活动的物质的水样,直接用通常方法测定BOD5的结果会偏离实际值,在测定前做相应的预处理,这些对BOD5测定有影响的物质和因素包括重金属及其他有毒的无机物或有机物、余氯等氧化性物质、pH值过高或过低等。

  16. 测定工业废水的BOD5时为什么要进行接种?如何接种?

  BOD5的测定是一个生物化学耗氧过程,水样中的微生物以水中有机物为营养生长繁殖的同时,分解有机物并消耗了水中的溶解氧,因此水样中含有一定数量的对其中有机物有降解能力的微生物。

  工业废水中一般都含有数量不等的有毒物质,这些有毒物质会对微生物的活动产生抑制作用,因此工业废水中自有微生物的数量很少甚至根本没有。如果采用测定微生物含量的城市污水的普通方法,可能就检测不到废水中真正有机物的含量,至少是偏低。比如经高温和灭菌处理及pH过高或过低的水样,除了需要采取进行降温、还原杀菌剂或调整pH值等预处理措施外,为测定BOD5时的准确性,也进行有效接种。

  测定工业废水的BOD5时,如果毒性物质含量太大,有时还要用剂予以去除;如果废水呈酸性或碱性,还要行中和处理;而且通常水样要经过稀释,然后才能采用标准稀释法测定。向水样中水加入适量含经过驯化的好氧微生物的接种液(如处理这种工业废水的曝气池混合液),就是为了使水样中含有一定数量的对有机物具有降解能力的微生物。在满足其他测定BOD5的条件下,利用这些微生物分解工业废水中的有机物,测定水样培养5d的耗氧量,即可得到工业废水的BOD5值。

  污水处理场的曝气池混合液或二沉池出水是测定进入污水处理厂的废水BOD5时的理想的微生物种源。直接用生活污水接种,因其中溶解氧很少甚至没有,容易出现厌氧微生物,需要长时间培养驯化,因此,这种经过驯化的接种液仅适用于作为特定需要的某些工业废水。

  17. 测定BOD5时制取稀释水的注意事项有哪些?

  稀释水的质量对BOD5的测定结果的准确性意义重大,因此要求稀释水空白5日耗氧小于0.2mg/L,好能控制在0.1mg/L以下,接种稀释水5日耗氧应在0.3~1.0mg/L之间。

  稀释水质量的关键在于控制其有机物的含量和抑制微生物繁殖的物质含量,因此好使用蒸馏水作为稀释水,不宜使用离子交换树脂制得的纯水作为稀释水,因为去离子水往往含有从树脂中分离出的有机物。如果制备蒸馏水的自来水中含有某些挥发性有机物,为预防其残留在蒸馏水中,就应在蒸馏前进行去除有机物的预处理。由金属蒸馏器制得的蒸馏水,应注意检查其中的金属离子含量,以免发生抑制微生物的繁殖和代谢,影响BOD5测定结果的准确性。

  如果所用稀释水因含有有机物而不符合使用要求时,可采取加入适量曝气池接种液后,在室温或20oC条件下贮存一定时间的方法予以消除影响。接种的量以5d耗氧约0.1mg/L为原则,为藻类繁殖,贮存在暗室中进行。如果贮存后的稀释水有沉渣,只能取用上清液,可过滤去除沉渣。为确保稀释水的溶解氧接近饱和,必要时可用真空泵或水射器吸入经净化的空气,也可用微型空压机注入经净化的空气,还可用氧气瓶通入纯氧,然后将经过充氧的稀释水在20oC培养箱中放置一定时间,使溶解氧达到平衡。冬季在较低室温放置的稀释水可能含有过多的溶解氧,夏季高温季节则恰好相反,因此在室温与20oC有明显差别时,一定要放置在培养箱内稳定一段时间,使之和培养环境的氧分压平衡。

  18. 测定BOD5时如何确定稀释倍数?

  稀释倍数过大或过小,可导致5d耗氧量太少或太多,超出正常耗氧范围使实验失败。而由于BOD5的测定周期很长,一旦出现此类情况,就无法以原样补测。因此,十分重视稀释倍数的确定。

  工业废水的组分虽然复杂,但其BOD5值与CODCr值之比通常在0.2~0.8之间,造纸、印染、化工等废水比值较低,食品工业废水则较高。一些含有颗粒状有机物的废水如酒糟废水等,在测定其BOD5时,会由于颗粒物沉淀于培养瓶底不能参加生化反应,造成比值明显偏低。

  稀释倍数的确定是按测定BOD5时,5d耗氧应大于2mg/L、剩余溶解氧大于1mg/L这两个条件为原则。稀释后当日培养瓶中的DO为7~8.5mg/L,假设5d耗氧量为4mg/L,则稀释倍数为CODCr值分别与0.05、0.1125、0.175三个系数的乘积。例如用250mL培养瓶测定CODCr为200mg/L的水样BOD5时,三个稀释倍数分别为:①200×0.005=10倍,②200×0.1125=22.5倍,③200×0.175=35倍。如果采用直接稀释法,则取水样的体积分别为:①250÷10=25mL,②250÷22.5≈11mL,③250÷35≈7mL。

  照此取样培养,将有1~2个测得的溶解氧结果符合上述两个原则。如果有两个稀释比符合上述原则,计算结果时,应取其平均值。如果剩余的溶解氧小于1mg/L、甚至为零时,应加大稀释比。如果培养期间溶解氧消耗量小于2 mg/L,一个可能是稀释倍数过大;另一个可能是微生物菌种不适应、活性差,或有毒物质的浓度过大,此时还可能出现稀释倍数大的培养瓶消耗溶解氧反而较多的现象。

  如果稀释水为接种稀释水,由于空白水样耗氧为0.3~1.0mg/L,所以稀释系数分别为0.05、0.125和0.2。

  如果已知水样CODCr具体值或大概范围,可以较容易地按上述稀释倍数去分析其BOD5值。当不知道水样的CODCr范围,为了缩短分析时间,可在测定CODCr过程中进行估算。具体做法是:首先配制每升中含有0.4251g邻苯二甲酸氢钾的标准溶液(此液CODCr值为500mg/L),然后按比例稀释成CODCr值分别为400mg/L、300mg/L、200mg/L、100mg/L的稀溶液。分别移取20.0mLCODCr值为100mg/L~500mg/L的标准溶液,按常法加入试剂,进行CODCr值测定。加热煮沸腾回流30min后,自然冷却到常温再加盖保存,制成标准比系列。按照常法测定水样的CODCr值过程中,当煮沸回流进行到30min时,用预热后的标准CODCr值列进行对比,估算出水样的CODCr值,依此确定化验BOD5时的稀释倍数。对含有难消解有机物的印染、造纸、化工等工业废水,必要时在煮沸回流到60min时再进行比估算。

  19. 测定BOD5时水样稀释法有几种?操作注意事项有哪些?

  测定BOD5时水样稀释法分一般稀释法和直接稀释法两种,其中一般稀释法需要使用的稀释水或接种稀释水数量较多。

  一般稀释法是在1L或2L量筒中,加入稀释水或接种稀释水约500mL,然后加入计算而得的一定体积的水样,再加稀释水或接种稀释水到满量程,用末端装有橡皮圆片的玻璃棒在水面下慢慢作上提或下沉式搅动,用虹吸管将已经混合均匀的水样溶液引入培养瓶中,并使充满溢出少许,小心盖紧瓶塞,并水封瓶口。对第二或第三个稀释倍数的水样,可利用剩余的混合液,经计算后在添加一定量的稀释水或接种稀释水,用同样的方法混合并引入培养瓶。

  直接稀释法是先以虹吸法在已知容积的培养瓶中引入约一半容积的稀释水或接种稀释水,然后沿瓶壁注入根据稀释倍数计算出的每一培养瓶中应加入的水样体积,再引入稀释水或接种稀释水至瓶颈,小心盖紧瓶塞,并水封瓶口。

  使用直接稀释法时,要注意引入稀释水或接种稀释水时一定不能过快。同时要摸索引入适体积的操作规律,避免过量溢出而产生的误差。

  无论使用哪中方法,在将水样引入培养瓶时,动作要轻缓,避免发生气泡,以防空气溶入水中或水中氧气溢出。同时要在盖紧瓶盖时一定要细心,避免瓶内留有气泡而影响测定结果。培养瓶在培养箱内培养时,每天都要检查其水封情况,及时填水,以封口水份蒸干而使瓶内进入空气。此外,5d前后使用的两个培养瓶的体积相同,以减小误差。

  20. 测定BOD5时可能出现的问题有哪些?

  对有硝化作用的污水处理系统的出水进行BOD5测定时,由于其中含有很多硝化细菌,测定结果中就包含了氨氮等含氮物质的需氧量。当需要区分水样中含碳物质的需氧量和含氮物质的需氧量时,可采用在稀释水中加入硝化抑制剂的方法消除BOD5测定过程中的硝化作用,比如在每升稀释水中加入10mg2-氯-6-(三氯甲基)砒啶或10mg丙烯基硫脲等。

  BOD5/CODCr接近1甚至大于1,往往说明检测过程出现了差错,对检测的每个环节进行审核,尤其要注意水样取用是否均匀。而BOD5/CODMn接近1甚至大于1却可能是正常的,因为高锰酸钾对水样中有机组分的氧化程度要比重铬酸钾低很多,同一水样的CODMn值有时会比CODCr值低很多。

  当出现规律性的稀释倍数越大、BOD5值越高的现象时,原因通常是水样中含有抑制微生物生长繁殖的物质。稀释倍数低时,水样中所含抑制物质的比例就越大,使细菌无法进行有效的生物降解作用,导致BOD5的测定结果偏低。此时应查找抑菌物质的具体成分或原因,测定前进行有效地预处理予以消除或掩蔽。

  BOD5/CODCr偏低时,比如低于0.2甚至低于0.1,如果测定的是工业废水,可能因为水样中的有机物可生物降解性很差,但如果测定的水样是城市污水或混有一定比例生活污水的工业废水,除了因为水样中含有化学毒性物质或抗菌素外,比较常见的原因是pH值非中性和存在余氯类杀菌剂等。为避免失误,在BOD5的测定过程中,水样和稀释水的pH值一定要分别调节到7和7.2,对有可能存在余氯等氧化剂的水样,要作例行检查。

  21. 表示废水中植物营养物质有哪些?

  植物营养物质包括氮、磷及其他一些物质,它们是植物生长发育所需要的养料。适度的营养元素可以促进生物和微生物的生长,过多的植物营养物质进入水体,会使水体中藻类大量繁殖,产生所谓“富营养化”现象,进而恶化水质、影响渔业生产和危害人体健康。浅水湖泊严重的富营养化可以导致湖泊沼泽化,直至致使湖泊死亡。

  同时,植物营养物质又是活性污泥中微生物生长繁殖所的成份,是关系到生物处理工艺能否正常运转的关键因素。因此常规污水处理运行中都将水中植物营养物质作为一项重要的控制。

  表示污水中植物营养物质的水质主要是氮素化合物(如有机氮、氨氮、盐和硝酸盐等)和磷素化合物(如总磷、磷酸盐等),常规污水处理运行中一般都监测进出水中的氨氮和磷酸盐。一方面为了维持生物处理运转正常,另一方面为了检测出水是否达到国家排放标准。

  22. 常用氮素化合物的水质有哪些?它们的关系如何?

  常用的代表水中氮素化合物的水质有总氮、凯氏氮、氨氮、盐和硝酸盐等。

  氨氮是水中以NH3和NH4+形式存在的氮,它是有机氮化物氧化分解的步产物,是水体受污染的一种标志。氨氮在盐菌作用下可以被氧化成盐(以NO2-表示),而盐在硝酸盐菌的作用下可以被氧化成硝酸盐(以NO3-表示)。而硝酸盐也可以在无氧环境中在微生物的作用下还原为盐。当水中的氮主要以硝酸盐形式为主时,可以表明水中含氮有机物含量已很少,水体已达到自净。

  有机氮和氨氮的总和可以使用凯氏(Kjeldahl)法测定(GB 11891--89),凯氏法测得的水样氮含量又称为凯氏氮,因而通常所称的凯氏氮是氨氮和有机氮之和。将水样先行除去氨氮后,再以凯氏法测定,其测得值即是有机氮。如果分别对水样测定凯氏氮和氨氮,则其差值也是有机氮。凯氏氮可作为污水处理装置进水氮含量的控制,还可以作为控制江河湖海等自然水体富营养化的参考。

  总氮为水中有机氮、氨氮、盐氮和硝酸盐氮的总和,也就是凯氏氮与总氧化氮之和。总氮、盐氮和硝酸盐氮都可使用分光光度法测定,盐氮的分析方法见GB7493-87,硝酸盐氮的分析方法见GB7480-87,总氮分析方法见GB 11894--89。总氮代表了水中氮素化合物的总和,是自然水体污染控制的一个重要,也是污水处理过程中的一个重要控制参数。

  23. 氨氮测定的注意事项有哪些?

  氨氮测定的常用方法是比法,即纳氏试剂比法(GB 7479--87)和水杨酸--次法(GB 7481--87)。水样的保存可采用浓硫酸酸化的方法,具体做法是用浓硫酸调整水样pH值至1.5~2之间,并在4oC环境下贮存。纳氏试剂比法和水杨酸--次法的检测浓度分别为0.05mg/L和0.01mg/L(以N计),当测定浓度为0.2mg/L以上的水样时,可以使用容量法(CJ/T75--1999)。为了获得准确的结果,无论采用哪种分析方法,测定氨氮时都要将水样预先蒸馏处理。

  水样的pH值对氨的测定影响很大,pH值太高,会使某些含氮的有机化合物转变为氨,pH值太低,加热蒸馏时部分氨又会滞留水中。为了获得准确的结果,分析前应将水样调至中性,水样偏酸或偏碱,可用1mol/L氢氧化钠溶液或1mol/L的硫酸溶液调节pH值为中性。然后加入磷酸盐缓冲溶液,使其pH值保持在7.4后,再进行蒸馏处理。加热后氨即呈气态从水中挥发出来,此时再用0.01~0.02mol/L的稀硫酸(苯酚--次法)或2%的稀硼酸(纳氏试剂法)吸收。

  对于某些Ca2+含量较大的水样,加入磷酸盐缓冲溶液后,由于Ca2+与PO43-生成了难溶的Ca3(PO43-)2沉淀、释放出磷酸盐中的H+降低了pH值,显然其他能与磷酸根生成沉淀的离子也能影响加热蒸馏时水样的pH值。也就是说,对于这样的水样,即使调节pH值为中性,又加入了磷酸盐缓冲溶液,结果pH值仍会远远低于期望值。因此,对于未知水样,在蒸馏后再测一下pH值,如果pH值不在7.2~7.6之间,就应当增加缓冲溶液的用量,一般每250mg钙多加10mL磷酸盐缓冲溶液。

  24. 反映水中含磷化合物含量的水质有哪些?它们的关系如何?

  磷是水生生物生长的元素之一,水中的磷大部分以各种形式的磷酸盐存在,少量以有机磷化合物的形式存在。水中的磷酸盐可分为正磷酸盐和缩合磷酸盐两大类,其中正磷酸盐指以PO43-、HPO42-、H2PO4-等形式存在的磷酸盐,而缩合磷酸盐包括焦磷酸盐、偏磷酸盐和聚合磷酸盐等,如P2O74-、P3O105-、HP3O92-、(PO3)63-等。有机磷化合物主要包括磷酸酯、亚磷酸酯、焦磷酸酯、次磷酸酯和磷酸胺等类型。磷酸盐和有机磷之和称为总磷,也是一项重要的水质。

  总磷的分析方法(具体做法见GB 11893--89)有两个基本步骤组成,步用氧化剂将水样中不同形态的磷转化为磷酸盐,第二步测定正磷酸盐,再反算求得总磷含量。常规污水处理运行中,都要监控和测定进入生化处理装置的污水及二沉池出水的磷酸盐含量。如果进水磷酸盐含量不足,就要投加一定量的磷肥加以补充;如果二沉池出水的磷酸盐含量超过国家一级排放标准0.5mg/L,就要考虑采取除磷措施。

  25. 磷酸盐测定的注意事项有哪些?

  磷酸盐测定的方法是在酸性条件下,磷酸根同钼酸铵生成磷钼杂多酸,磷钼杂多酸用还原剂氯化亚锡或抗坏血酸还原成蓝的络合物(简称钼蓝法CJ/T78--1999),也可以用碱性燃料生成多元有络合物直接进行分光光度测定。

  磷的水样不稳定,好采集后立即分析。如果分析不能立即进行,每升水样加40mg氯化高汞或1mL浓硫酸防腐后,再贮于棕玻璃瓶中放置于4oC的冷藏箱内。如果水样仅用于分析总磷,可以不用防腐处理。

  由于磷酸盐可以吸附于塑料瓶壁上,故不可用塑料瓶贮存水样。所使用的玻璃瓶都要用稀的热盐酸或稀硝酸冲洗,再用蒸馏水冲洗数次。

  26. 反映水中固体物质含量的各种有哪些?

  污水中的固体物质包括水面的漂浮物、水中的悬浮物、沉于底部的可沉物及溶解于水中的固体物质。漂浮物是漂浮在水面上的、密度小于水的大块或大颗粒杂质,悬浮物是悬浮于水中的小颗粒杂质,可沉物是经过一段时间能在水体底部沉淀下来的杂质。几乎的污水中都有成分复杂的可沉物,成分主要是以有机物为主的可沉物被称为污泥,成分以无机物为主的可沉物被称为残渣。漂浮物一般定量化,其他几种固体物质则可以用以下衡量。

  反映水中固体总含量的是总固体,或称全固形物。根据水中固体的溶解性,总固体可分为溶解性固体(Dissolved Solid,简写为DS)和悬浮固体(Suspend Solid,简写为SS)。根据水中固体的挥发性能,总固体可分为挥发性固体(VS)和固定性固体(FS,也叫灰分)。其中,溶解性固体(DS)和悬浮固体(SS)还可以进一步细分为挥发性溶解固体、不可挥发性溶解固体和挥发性悬浮固体、不可挥发性悬浮固体等。

  27. 什么是水的全固形物?

  反映水中固体总含量的是总固体,或称全固形物,分为挥发性总固体和不可挥发性总固体两部分。总固体包括悬浮固体(SS)和溶解性固体(DS),每一种也可进一步细分为挥发性固体和不可挥发性固体两部分。

  总固体的测定方法是测定废水经过103oC~105oC蒸发后残留下来的固体物质的质量,其干燥时间、固体颗粒的大小与所用的干燥器有关,但在情况下,干燥时间的长短都以水样中的水分蒸干为基础,并以干燥后质量恒定为止。

  挥发性总固体表示总固体在600oC高温下灼烧后所减轻的固体质量,因此也叫做灼烧减重,可以粗略代表水中有机物的含量。灼烧时间也像测定总固体时的干燥时间一样,应灼烧至样品中的碳挥发掉为止。灼烧后剩余的部分物质的质量,即为固定性固体,也称为灰分,可以粗略代表水中无机物的含量。

  28. 什么是溶解性固体?

  溶解性固体也称为可过滤物质,可通过对过滤悬浮固体后的滤液在103oC~105oC温度下进行蒸发干燥后,测定残留物质的质量,就是溶解性固体。溶解性固体中包括溶解于水的无机盐类和有机物质。可用总固体减去悬浮固体的量来粗略计算,常用单位是mg/L。

  将污水深度处理后回用时,将其溶解性固体控制在一定范围内,否则不论用于绿化、冲厕、洗车等杂用水还是作为工业循环水,都会出现一些不利影响。部标准《生活杂用水水质标准》CJ/T48--1999规定:用于绿化、冲厕的回用水溶解性固体不能超过1200 mg/L,用于洗车、扫除时的回用水溶解性固体不能超过1000 mg/L。

  29. 什么是水的含盐量和矿化度?

  水的含盐量也称矿化度,表示水中所含盐类的总数量,常用单位是mg/L。由于水中的盐类均以离子的形式存在,所以含盐量也就是水中各种离子的数量之和。

  从定义可以看出,水的溶解性固体含量比其含盐量要大一些,因为溶解性固体中还含有一部分有机物质。在水中有机物含量很低时,有时也可用溶解性固体近似表示水中的含盐量。

  30. 什么是水的电导率?

  电导率是水溶液电阻的倒数,单位是μs/cm。水中各种溶解性盐类都以离子状态存在,而这些离子均具有导电能力,水中溶解的盐类越多,离子含量就越大,水的电导率就越大。因此,根据电导率的大小,可以间接表示水中盐类总量或水的溶解性固体含量的多少。

  新鲜蒸馏水的电导率为0.5~2μs/cm,超纯水的电导率小于0.1μs/cm,而软化水站排放的浓水电导率可高达数千μs/cm。

  31. 什么是悬浮固体?

  悬浮固体SS也称为不可过滤物质,测定方法是对水样利用0.45μm的滤膜过滤后,过滤残渣经103oC~105oC蒸发干燥后剩余物质的质量。挥发性悬浮固体VSS指的是悬浮固体在600oC高温下灼烧后挥发掉的质量,可以粗略代表悬浮固体中有机物的含量。灼烧后剩余的那部分物质就是不可挥发性悬浮固体,可以粗略代表悬浮固体中无机物的含量。

  废水或受污染的水体中,不溶性悬浮固体的含量和性质随污染物的性质和污染程度而变化。悬浮固体和挥发性悬浮固体是污水处理设计和运行管理的重要。

  32. 为什么悬浮固体和挥发性悬浮固体是废水处理设计和运行管理的重要参数?

  废水中悬浮固体和挥发性悬浮固体是污水处理设计和运行管理的重要参数。

  对于二沉池出水的悬浮物含量,国家污水排放一级标准规定不得超过70mg/L(城镇二级污水处理厂不得超过20mg/L),这是一项重要的水质控制之一。同时悬浮物又是常规污水处理系统运行是否正常的指示,二沉池出水的悬浮物量发生异常变化或出现超标现象,说明污水处理系统出现了问题,采取有关措施使其恢复正常。

  生物处理装置内的活性污泥中悬浮固体(MLSS)和挥发性悬浮固体含量(MLVSS)在一定数量范围内,而且对于水质相对稳定的污水生物处理系统,两者之间存在一定比例关系,如果MLSS或MLVSS超出特定范围或二者比值发生较大改变,设法使其恢复正常,否则势必造成生物处理系统出水水质发生变化,甚至导致包括悬浮物在内的各种排放超标。另外,通过测定MLSS,还可以监测曝气池混合液的污泥体积指数,从而了解活性污泥及其他生物悬浮液的沉降特性和活性。

  33. 悬浮固体的测定方法有哪些?

  GB11901—1989规定了重量法测定水中悬浮物的测定方法,测定悬浮固体SS时,一般是采集一定体积的废水或混合液,用0.45μm滤膜过滤截留悬浮固体,以滤膜截留悬浮固体前后的质量差作为悬浮固体的量。一般废水和二沉池出水的SS常用单位是mg/L,而曝气池混合液和回流污泥的SS常用单位是g/L。

  在废水处理场测定曝气混合液和回流污泥等SS值较大的水样时,对测定结果的度要求较低时,可以使用定量滤纸代替0.45μm滤膜。这样既可以反应实际情况以指导实际生产的运行调整,又可以节约化验费用。但在测定二沉池出水或深度处理出水的SS时,使用0.45μm滤膜进行测定,否则测定结果的误差会过大。

  在废水处理过程中,悬浮物浓度是需要经常检测的工艺参数之一,比如进水悬浮物浓度、曝气内混合液污泥浓度、回流污泥浓度、剩余污泥浓度等。为测定SS值,废水处理场经常使用污泥浓度计,有光学型和超声波型等两种。光学型污泥浓度计的基本原理是利用光束在水中穿过时遇到悬浮颗粒会散射而强度减弱,光的散射同遇到的悬浮颗粒的数量、大小成一定比例,通过光敏电池来检测散射光和光的衰减程度,就可以推断水中污泥浓度。超声波型污泥浓度计的原理是利用超声波在废水中穿过时,超声波强度的衰减量与水中的悬浮颗粒浓度成正比,通过特制的传感器来检测超声波的衰减程度,就可以推断水中污泥浓度。

  34. 悬浮固体测定的注意事项有哪些?

  测定取样时,二沉池出水水样或生物处理装置内的活性污泥样具有代表性,应当去除其中的大颗粒的漂浮物或浸没于其中的非均质凝块物质。为滤片上残留物较多导致夹带水份并延长烘干时间,取样体积以产生2.5~200mg的悬浮固体量为佳。如果没有其他依据,悬浮物测定样品体积可以定为100ml,而且要求经过充分混合。

  测定活性污泥样品时,由于悬浮固体含量较大,经常会出现样品中悬浮固体量超过200mg的情况,此时要适当延长烘干时间,然后再移至干燥器内冷却到平衡温度后称重,反复烘干、干燥直至恒重或称重损失小于前次称重的4%。为避免多次烘干、干燥、称重的操作过程,要严格控制每个操作步骤和时间一致,由一位化验员独立完成,以手法一致。

  采集的水样应尽快分析测定,如果需要放置,可以贮存在4oC的冷藏箱内,但水样的保存时间长不能超过7d。为使测定结果尽量,在测定曝气混合液等高SS值的水样时,可以适当减少水样的体积;而测定二沉池出水等低SS值水样时,可以适当加大测试水样的体积。

  当测定回流污泥等高SS值的污泥浓度时,为滤膜或滤纸等过滤介质截留过多的悬浮物而夹带过多的水分,延长干燥的时间,恒重称量时,要注意重量的变化幅度。如果变化过大,往往说明滤膜上的SS外干而内湿,需要再延长干燥时间。

  35. 什么是水的浊度?

  水的浊度是一种表示水样的透光性能的,是由于水中泥沙、粘土、微生物等细微的无机物和有机物及其他悬浮物使通过水样的光线被散射或吸收、而不能直接穿透所造成的,一般以每升蒸馏水中含有1mgSiO2(或硅藻土)时对特定光源透过所发生的阻碍程度为1个浊度的标准,称为杰克逊度,以JTU表示。

  浊度计是利用水中悬浮杂质对光具有散射作用的原理制成的,其测得的浊度是散射浊度单位,以NTU表示。水的浊度不仅与水中存在的颗粒物质的含量有关,而且和这些颗粒的粒径大小、形状、性质等有密切的关系。

  水的浊度高,不仅增加剂的用量,而且影响效果。浊度的降低,往往意味着水中有害物质、细菌和的减少。水的浊度达到10度时,人们就可以看出水质浑浊。

  36. 浊度的测定方法有哪些?

  国家标准GB13200—1991规定的浊度测定方法有分光光度法和目视比法两种,这两种方法测定的结果单位是JTU。另外,还有使用光的散射作用测定水浊度的仪器法,浊度计测定的结果单位是NTU。分光光度法适用于饮用水、天然水及高浊度水的检测,检测限为3度;目视比法适用于饮用水和水源水等低浊度水的检测,检测限为1度。在实验室对二沉池出水或深度处理出水进行浊度检测时,前两种检测方法都可以使用;而污水处理厂的出水和深度处理系统的管道上进行浊度检测时,往往需要安装在线式浊度计。

  在线式浊度计的基本原理和光学型污泥浓度计相同,两者的差别在于污泥浓度计所测量的SS浓度高,因而利用光吸收的原理,而浊度计测量的SS较低,因而利用光散射原理,测得穿过被测水的光的散射分量,即可推断水的浊度大小。

  浊度是光与水中固体颗粒共同作用的结果,浊度大小与水中杂质颗粒的大小、形状以及由此引起的对光的折射系数等因素有关,因此,水中的悬浮物含量较高时,一般其浊度也较高,但两者之间又没有直接的相关关系。有时同样的悬浮物含量,但由于悬浮物的性质不同,测得的浊度值却有很大差异。因此,如果水中含有的悬浮杂质较多,应用测定SS的方法来准确反映水的污染程度或杂质的具体数量。

  与水样接触的玻璃器皿清洁,清洁时可用盐酸或表面活性剂清洗。测定浊度的水样不能有碎屑及易沉颗粒,而且用具塞玻璃瓶收集,取样后尽快测定。情况可在4oC暗处短时间保存,多保存24h,而且测定前需要激烈振摇并恢复到室温。

  37. 什么是水的度?

  水的度是测量水的颜时所规定的,水质分析中所称的度通常指的水的真实颜,即仅指水样中溶解性物质产生的颜。因此在测定前,需要对水样进行澄清、离心分离或用0.45μm滤膜过滤去除SS,但不能用滤纸过滤,因为滤纸能吸收水的部分颜。

  用未经过滤或离心分离的原始样品进行测定的结果是水的表观颜,即由溶解性物质和不溶解性悬浮物质共同产生的颜。一般不能用测定真实颜的铂钴比法测定和量化水的表观颜,通常用文字来描述其深浅、调以及透明程度等特征,然后用稀释倍数法进行测定。用铂钴比法测得的结果和用稀释倍数法测定的度值往往没有可比性。

  38. 度的测定方法有哪些?

  度的测定方法有铂钴比法和稀释倍数法两种(GB 11903—1989)。两种方法应独立使用,测定的结果之间一般没有可比性。铂钴比法测定适用于清洁水、轻度污染水并略带黄的水,以及比较清洁的地表水、地下水、饮用水和中水、污水深度处理后的回用水等。而工业废水和污染较严重的地表水一般使用稀释倍数法测定其度。

  铂钴比法是以1L水中含有1mgPt(Ⅳ)和2mg六水氯化钴(Ⅱ)时所具有的颜计为1个度标准单位,一般称为1度。1个标准度单位的配制方法是在1L水中加入0.491mgK2PtCl6及2.00mgCoCl2∙6H2O,又称为铂钴标准,成倍地加入铂钴标准剂就能得到成倍的标准度单位。由于氯钴酸钾的价格昂贵,一般使用K2Cr2O7和CoSO4∙7H2O按一定比例和操作步骤配制成代用度标准溶液。在测定度时,把待测水样与一系列不同度的标准液进行比较,即可得到水样的度。

  稀释倍数法是将水样用光学纯水稀释至将近无后移入比管中,在白背景下与同样液柱高度的光学纯水比较颜深浅,如果发现有差异,再进行稀释,直到不能觉察出颜为止,此时水样的稀释倍数即为表达水颜强度的数值,单位是倍。

  39. 什么是水的酸度和碱度?

  水的酸度是指水中所含有的能与强碱发生中和作用的物质的量。形成酸度的物质有能离解出H+的强酸(如HCl、H2SO4)、部分离解出H+的弱酸(H2CO3、有机酸)和强酸弱碱组成的盐类(如NH4Cl、FeSO4)等三类。酸度是用强碱溶液滴定而测定的。滴定时以甲基橙为指示剂测得的酸度称为甲基橙酸度,包括类强酸和第三类强酸盐形成的酸度;用酚酞为指示剂测得的酸度称为酚酞酸度,是上述三类酸度的总合,因此也称总酸度。天然水中一般不含强酸酸度,而是由于含有碳酸盐和重碳酸盐使水呈碱性,当水中有酸度存在时,往往表示水已受到酸污染。

  与酸度相反,水的碱度是指水中所含有的能与强酸发生中和作用的物质的量。形成碱度的物质有能离解出OH-的强碱(如NaOH、KOH)、部分离解出OH-的弱碱(如NH3、C6H5NH2)和强碱弱酸组成的盐类(如Na2CO3、K3PO4、Na2S)等三类。碱度是用强酸溶液滴定而测定的。滴定时以甲基橙为指示剂测得的碱度是上述三类碱度的总合,称为总碱度或甲基橙碱度;用酚酞为指示剂测得的碱度称为酚酞碱度,包括类强碱形成的碱度和第三类强碱盐形成的部分碱度。

  酸度和碱度的测定方法有酸碱指示剂滴定法和电位滴定法,一般都折合成CaCO3来计量,单位是mg/L。

  40. 什么是水的pH值?

  pH值是被测水溶液中氢离子活度的负对数,即pH=-lgαH+,是污水处理工艺中常用的之一。在25oC条件下,pH值=7时,水中氢离子和氢氧根离子的活度相等,相应的浓度为10-7mol/L,此时水为中性,pH值﹥7表示水呈碱性,而pH值﹤7则表示水呈酸性。

  pH值的大小反映了水的酸性和碱性,但不能直接表明水的酸度和碱度。比如0.1mol/L的盐酸溶液和0.1mol/L的乙酸溶液,酸度同样都是100mmol/L,但两者的pH值却大不相同,0.1mol/L的盐酸溶液的pH值是1,而0.1mol/L的乙酸溶液的pH值是2.9。

  41. 常用的pH值测定方法有哪些?

  在实际生产中,为了方便地掌握进入废水处理场废水的pH值变化情况,简单的方法是用pH试纸粗略测定。对于无、无悬浮杂质的废水,还可以使用比法。目前,我国测定水质pH值的标准方法是电位法(GB 6920--86玻璃电法),它通常不受颜、浊度、胶体物质以及氧化剂、还原剂的影响,既可以测定清洁水的pH值、又可以测定受不同程度污染的工业废水的pH值,这也是广大废水处理场广泛使用的测定pH值的方式。

  pH值的电位法测定原理是通过测定玻璃电与已知电位的参比电的电位差,从而得到指示电的电位,即pH值。参比电一般使用甘汞电或Ag-AgCl电,以甘汞电应用为普遍。pH电位计的核心是一个直流放大器,使电产生的电位在仪器上放大后以数字或指针的形式在表头上显示出来。电位计通常装有温度补偿装置,用以校正温度对电的影响。

  废水处理场使用的在线pH计的工作原理是电位法,使用注意事项和实验室的pH计基本相同。但由于其使用的电长期连续浸泡在废水或曝气池等含有大量油污或微生物的地方,因此除了要求pH计设置对电的自动清洗装置外,还需要根据水质情况和运行经验进行人工清洗。一般对用在进水或曝气池中的pH计每周进行一次人工清洗,而对用在出水中的pH计可每月进行一次人工清洗。对于能同时测定温度和ORP等项目的pH计,应当按照测定功能所需要的使用注意事项进行维护和保养。

  42. pH值测定的注意事项有哪些?

  ⑴电位计应保持干燥、防尘,定期通电维护,电的输入端引线连接部分保持清洁,水滴、灰尘、油污等进入。使用交流电源时要接地良好,使用干电池的便携式电位计应定期更换电池。同时要定期对电位计进行校验和调零等校正维护,且一经调试妥当,在测试过程中就不能随意旋动电位计的零点和校正、定位等调节器。

  ⑵用于配制标准缓冲溶液和淋洗电的水,不能含有CO2、pH值在6.7~7.3之间、电导率要小于2μs/cm。经离子交换树脂处理过的水,再经煮沸放冷后可以达到此要求。配制好的标准缓冲溶液应密闭保存在硬质玻璃瓶或聚乙烯瓶中,再存放在4oC的冰箱中,可以延长使用期限,如果在空气敞开存放或在常温下保存,使用期限一般不能超过1个月,使用过的缓冲液不能再倒回储存瓶中重复使用。

  ⑶在正式测量前,首先应检查仪器、电、标准缓冲液是否正常。并定期对pH计进行校验,通常检验周期为一个季度或半年,校验使用两点校验法。即根据待测样品的pH值范围,选用两种与其接近的标准缓冲溶液,一般这两种缓冲溶液的pH值差至少要大于2。用种溶液定位后,再对第二种溶液测试,电位计的显示结果与第二种标准缓冲溶液的标准pH值之差应不大于0.1 pH单位。如果误差大于0.1 pH单位,应用第三种标准缓冲溶液检验。如果此时误差小于0.1 pH单位,则很可能是第二种缓冲溶液出了问题。如果误差仍大于0.1 pH单位,则说明电出了问题,需要对电进行处理或更换新的电。

  ⑷更换标准缓冲液或样品时,要用蒸馏水对电进行充分的淋洗,并用滤纸吸去附着在电上的水,再用待测溶液淋洗以消除相互影响,这一点对使用弱性缓冲溶液时尤其重要。测量pH值时,应对水溶液进行适当搅拌,以使溶液均匀和达到电化学平衡,而在读数时则应停止搅动再静置片刻,以使读数稳定。

  ⑸测定时,要先用水仔细冲洗两个电,再水样冲洗,然后将电浸入盛水样的小烧杯中,用手小心摇动烧杯使水样均匀,待读数稳定后记录pH值。

  43. 玻璃电的使用注意事项有哪些?

  ⑴玻璃电的零电位pH值在配套酸度计的定位调节器范围内,而且不得在非水溶液中使用。玻璃电在初次使用或久置不用后重新使用时,玻璃球泡要在蒸馏水中浸泡24h以上,以使形成良好的水化层。使用前应仔细检查电是否完好,玻璃球泡应无裂痕和斑点,内参比电应浸泡在内充液中。

  ⑵如果内充溶液中有气泡,可轻轻甩动电令气泡溢出,使内参比电与溶液之间接触良好。为避免玻璃球泡破损,水冲洗后,可以用滤纸小心地吸去附着在电上的水,不能用力擦拭。安装时,玻璃电的玻璃球泡要比参比电略高一些。

  ⑶当测量含有油或乳化状物质的水样后,要及时用洗涤剂和水清洗电。如果电附着无机盐结垢,可将电浸泡于(1+9)盐酸中,待结垢溶解后,用水充分淋洗,再置于蒸馏水中待用。若上述处理效果不理想,可用丙酮或乙醚(不能用无水乙醇)进行清洗后,再按上述方法处理,然后将电在蒸馏水中浸泡过夜后使用。

  ⑷如果仍无效,还可以用铬酸洗液浸泡数分钟。铬酸清除玻璃外表面所吸附物质,但存在具有脱水作用的弊端,用铬酸处理过的电在水中浸泡过夜,方可用于测量。在万不得已的情况下,还可将电在5%HF溶液浸泡20~30s或在氟氢化铵(NH4HF2)溶液中浸泡1min作适度的腐蚀处理,浸泡后立即用水充分淋洗,再浸入水中待用。经过这种剧烈的处理后,电的寿命将受到影响,因此这两种清洁方法只能作为替代废弃的措施。

  44. 甘汞电的原理和使用注意事项有哪些?

  ⑴甘汞电由金属汞、氯化亚汞(甘汞)和氯化钾盐桥三部分组成。电中的氯离子来源于氯化钾溶液,当氯化钾溶液浓度一定的情况下,则电电位在一定温度下是常数,而与水的pH值无关。电内部的氯化钾溶液通过盐桥(陶瓷砂芯)往外渗透,使原电池导通。

  ⑵使用时,取下电侧管口的橡皮塞和下端的橡皮帽,以使盐桥溶液借重力作用维持一定流速渗漏,保持与待测溶液的通路。电不用时,应套好橡皮塞和橡皮帽,蒸发和渗出。长期不用的甘汞电应充满氯化钾溶液,放置在电盒内保存。

  ⑶电内氯化钾溶液不能有气泡,以短路;溶液内应保留少许氯化钾晶体,以氯化钾溶液的饱和。但氯化钾晶体不可过多,否则就有可能堵塞与被测溶液的通路,以至产生不规律的读数。同时还应注意排除甘汞电表面或盐桥与水接触部位的气泡,否则也可能导致测量回路断路读不出数或读数不稳。

  ⑷测量时,甘汞电内的氯化钾溶液的液面高于被测溶液的液面,以防被测液向电内扩散而影响甘汞电的电位。水中含有的氯化物、硫化物、络合剂、银盐、过氯酸钾等成分向内扩散,都将会影响甘汞电的电位。

  ⑸温度波动较大时,甘汞电的电位变化有滞后性,即温度变化快,电电位的变化较慢,电电位达到平衡所需的时间较长,因此测量时要尽量避免温度大幅度变化。

  ⑹要注意甘汞电陶瓷砂芯被堵塞,当测量浑浊溶液或胶体溶液后要注意及时清洗。若甘汞电陶瓷砂芯表面有粘附物,可用金刚砂纸或在油石上加水轻轻磨去。

  ⑺定期对甘汞电的稳定性进行检查,可分别测定被检验的甘汞电与另一只完好的内充液相同的甘汞电在无水或同一水样中的电位,两个电的电位差值应小于2mV,否则就需要更换新的甘汞电。

  45. 温度测定的注意事项有哪些?

  目前,国家污水排放标准对水温没有具体规定,但水温对常规生物处理系统的意义巨大,予以高度重视。无论好氧处理还是厌氧处理,都要求在一定温度范围内进行,一旦超过此范围,即温度过高或过低都会降低处理效率,甚至造成整个系统的失效。尤其要重视处理系统进水的温度监测,一旦发现进水温度改变,就应当密切注意后续处理装置内水温的变化,如果在可以忍受的范围内,可以置之不理,否则就应当调节进水的温度。

  GB 13195--91 规定了表层温度计、深层温度计或颠倒温度计测定水温的具体方法。正常情况下,现场临时测定废水处理场各个工艺构筑物内水温时,一般可以使用品质合格的充汞式玻璃温度计测定。如果需要将温度计从水中拿出来读数,那么从温度计离开水面到读数完毕的时间不能超过20s。温度计至少要有0.1oC的刻度,并且热容应当尽可能小以使其易于达到平衡,同时需要定期由计量检定部门使用精密温度计进行校正。

  临时测定水温时,要将玻璃温度计或其他测温设备探头浸入待测水中一定时间(一般5min以上)、达到平衡后再去读取数据,温度值一般到0.1oC。废水处理场一般在曝气池的进水端安装在线温度测定仪,而测温仪通常使用热敏电阻测量水温。

  46. 什么是溶解氧?

  溶解氧DO(英文Dissolved Oxygen的简写)表示的是溶解于水中分子态氧的数量,单位是mg/L。水中的溶解氧饱和含量与水温、大气压和水的化学组成有关,在一个大气压下,0oC的蒸馏水中溶解氧达到饱和时的氧含量为14.62mg/L,在20oC时则为9.17mg/L。水温升高、含盐量增加或大气压力下降,都会导致水中溶解氧含量降低。

  溶解氧是鱼类和好氧菌生存和繁殖所的物质,溶解氧低于4mg/L,鱼类就生存。当水被有机物污染后,好氧微生物氧化有机物会消耗水中的溶解氧,如果不能及时从空气中得到补充,水中的溶解氧就会逐渐减少,直到接近于0,引起厌氧微生物的大量繁殖,使水变黑变臭。

  47. 常用的溶解氧测定方法有哪些?

  常用的溶解氧测定方法有两种,一是碘量法及其修正法(GB 7489--87),二是电化学探头法(GB11913--89)。碘量法适用于测量溶解氧大于0.2mg/L的水样,一般碘量法只适用于测定清洁水的溶解氧,测定工业废水或污水处理厂各个工艺环节的溶解氧时使用修正的碘量法或电化学法。电化学探头法的测定下限与所用的仪器有关,主要有薄膜电法和无膜电法两种,一般适用于测定溶解氧大于0.1mg/L的水样。污水处理厂在曝气池等处安装使用的在线DO仪使用的就是薄膜电法或无膜电法。

  碘量法的基本原理是向水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕沉淀,加酸后,棕沉淀溶解并与碘离子反应生成游离碘,再以淀粉为指示剂,用硫代硫酸钠滴定游离碘,即可计算出溶解氧的含量。

  当水样有颜或含有能与碘反应的有机物时,不宜使用碘量法及其修正法测定水中的溶解氧,可使用氧敏感薄膜电或无膜电测定。氧敏感电由两个与支持电解质相接触的金属电及选择性透过膜组成,薄膜只能透过氧和其他气体,水和其中可溶物质不能通过,通过薄膜的氧气在电上还原,产生微弱的扩散电流,在一定温度下电流大小与溶解氧含量成正比。无膜电由的银合金阴和铁(或锌)阳组成,不用薄膜和电解质,两之间也不加化电压,只是通过被测水溶液沟通两而形成一个原电池,水中的氧分子直接在阴上还原,产生的还原电流与被测溶液中的氧含量成正比。

  48. 为什么溶解氧是废水生物处理系统正常运转的关键之一?

  水中保持一定的溶解氧是好氧水生生物得以生存繁殖的基本条件,因而溶解氧也污水生物处理系统正常运转的关键之一。

  好氧生物处理装置要求水中溶解氧好在2mg/L以上,厌氧生物处理装置要求溶解氧在0.5mg/L以下,如果想进入理想的产甲烷阶段则好检测不到溶解氧(为0),而A/O工艺的A段为缺氧状态时,溶解氧好在0.5~1mg/L。在好氧生物法的二沉池出水合格时,其溶解氧含量一般不低于1mg/L,过低(﹤0.5mg/L)或过高(空气曝气法﹥2mg/L)都会导致出水水质变差、甚至超标。因此对生物处理装置内部和其沉淀池出水的溶解氧含量监测予以充分重视。

  碘量滴定法不适合作现场检验,也用于连续监测或就地测定溶解氧。在污水处理系统的溶解氧连续监测中采用的都是电化学法中的薄膜电法。为了实时连续掌握污水处理过程中曝气池内混合液DO的变化,一般采用在线式电化学探头DO测定仪,同时DO仪也是曝气池溶氧自动控制调节系统的重要组成部分,对于调节控制系统的正常运行起着重要的作用。同时也是工艺操作人员调整、控制污水生物处理正常运转的重要依据。

  49. 碘量滴定法测定溶解氧的注意事项有哪些?

  采集测定溶解氧的水样时要小心,水样不能长时间和空气接触,也不能搅动。在集水池中取样时要用300毫升配玻璃塞的细口溶解氧瓶,同时测定和记录水温。再就是使用碘量滴定法时,取样后除选择特定的方法排除干扰外,还要尽可能缩短保存时间,好立即分析。

  通过技术和设备上的改进和借助于仪器化,碘量滴定法仍然是分析溶解氧的精密和的滴定法。为排除水样中的各种干扰物质的影响,碘量滴定法有几种予以修正的具体方法。

  水样中存在的氧化物、还原物、有机物等都会对碘量滴定法产生干扰,某些氧化剂可把碘化物游离为碘(正干扰),某些还原剂可把碘还原为碘化物(负干扰),当氧化的锰沉淀物被酸化时,大部有机物可被部分氧化,产生负误差。叠氮化物修正法可以有效地排除盐的干扰,而水样中含有低价铁时可用高锰酸钾修正法排除干扰。水样中含有、藻类、悬浮固体时,应当使用明矾絮凝修正法,而硫酸铜--氨基磺酸絮凝修正法用于测定活性污泥混合液的溶解氧。

  50. 薄膜电法的注意事项测定溶解氧的注意事项有哪些?

  薄膜电由、电解液和薄膜组成,电腔内充入KCl溶液,薄膜将电解液和被测水样隔开,溶解氧通过薄膜渗透扩散。在两间加上0.5~1.0V的直流固定化电压后,被测水中的溶解氧通过薄膜并在阴上还原,产生与氧浓度成正比的扩散电流。

  常用的薄膜是能使氧分子透过而且性质比较稳定的聚乙烯和碳氟化合物薄膜,由于薄膜能使多种气体渗透,而有些气体(如H2S、SO2、CO2、NH3等)在指示电上不易去化,进而会降低电的灵敏度,导致测定结果出现偏差。被测水中的油污、油脂及曝气池中的微生物常会附着在薄膜上,严重影响测量精度,因此需要定期清洗和校验。

  因此,对在污水处理系统中使用的薄膜电式溶解氧测定仪,要严格按照制造商的校准方法操作,并定期清洗、校准、补充电解液、更换电薄膜。更换薄膜时要仔细进行,一要污染敏感元件,二要注意不在薄膜下留有微小气泡,否则会使剩余电流升高,影响测定结果。为数据准确,薄膜电测定点的水流要有一定的紊动,即通过薄膜表面的试液具有的流速。

  一般情况下,可以用空气或已知DO浓度的样品以及不含DO的样品对照校准,当然,好使用正在检验中的水样进行校准。另外,还要经常校核一个或两个点来检验温度校正数据。

  51. 反映水中有毒有害有机物的各种有哪些?

  常见污水中的有毒有害有机物,除了少部分(如挥发酚等)外,大部分是生物降解的,而且对人体还有较大危害性,如石油类、阴离子表面活性剂(LAS)、有机氯和有机磷农、多氯联苯(PCBs)、多环芳烃(PAHs)、高分子合成聚合物(如塑料、合成橡胶、人造纤维等)、燃料等有机物。

  国家综合排放标准GB 8978-1996 对各个行业排放的含有以上有毒有害有机物污水浓度作出了严格的规定,具体水质有苯并(a)芘、石油类、挥发酚、有机磷农(以P计)、四氯甲烷、四氯乙烯、苯、甲苯、间-甲酚等36项。行业不同,其排放的废水需要控制的也不同,应当根据各自排放的污水的具体成份,监测其水质是否符合国家排放标准。

  52. 水中酚类化合物的类型有几种?

  酚是苯的羟基衍生物,其羟基直接与苯环相连。按照苯环上所含羟基数目的多少,可分为单元酚(如苯酚)和多元酚。按照能否与水蒸汽共沸而挥发,又分为挥发酚和不挥发酚。因此,酚类不单指苯酚,而且还包括邻位、间位和对位被羟基、卤素、硝基、羧基等取代的酚化物的总称。

  酚类化合物是指苯及其稠环的羟基衍生物,种类繁多,通常认为沸点在230oC以下的为挥发酚,而沸点在230oC以上的为不挥发酚。水质标准中的挥发酚是指在蒸馏时,能与水蒸汽一起挥发的酚类化合物。

  53. 常用的挥发酚测定方法有几种?

  由于挥发酚为一类化合物,而非单一化合物,因此,即使均以苯酚为标准,如果采用不同的分析方法,其结果也会存在差异。为使结果具有可比性,使用国家规定的统一方法,常用的挥发酚测定方法是GB 7490--87 规定的4—氨基安替比林分光光度法和GB 7491--87 规定的溴化容量法。

  4--氨基安替比林分光光度法干扰因素少、灵敏度较高,适用于测定挥发酚含量﹤5mg/L的较清洁的水样。其基本原理是在铁氰化钾存在和pH值为10的水中,酚类化合物与4--氨基安替比林反应生成橙红染料,在波长510nm处有大吸收值。如果用三氯甲烷将生成的橙红染料萃取则在波长460nm处有大吸收值,可使4--氨基安替比林分光光度法检出浓度由0.1mg/L降到0.002mg/L。

  溴化容量法操作简便易行,适用于测定﹥10mg/L的工业废水或工业废水处理场出水中的挥发性酚量。其基本原理是在过量溴的溶液中,酚与溴生成三溴酚,并进一步生成溴代三溴酚。然后剩余的溴与碘化钾反应释放出游离碘,同时溴代三溴酚与碘化钾反应生成三溴酚和游离碘。再用硫代硫酸钠溶液滴定游离碘,根据其消耗量可以计算出以苯酚计的挥发酚含量。

  54. 测定挥发酚的注意事项有哪些?

  由于溶解氧等氧化剂及微生物都可以将酚类化合物氧化或分解,使水中的酚类化合物很不稳定,因此通常采取加酸(H3PO4)和降低温度的方法抑制微生物的作用,采用加入足量硫酸亚铁的方法消除氧化剂的影响。即使采取了上述措施,水样也应在24h内进行分析化验,而且一定要将水样保存在玻璃瓶内而不能是塑料容器内。

  无论溴化容量法还是4--氨基安替比林分光光度法,水样中含有氧化性或还原性物质及金属离子、芳香胺、油分和焦油类等成份时,都会对测定的准确性产生干扰,使用必要措施消除其影响。例如氧化剂可在加入硫酸亚铁或亚砷酸钠后被除去,硫化物可在酸性条件下加入硫酸铜后被除去,油分和焦油类可在强碱性条件下用有机溶剂萃取分离除去,亚硫酸盐、甲醛等还原性物质在酸性条件下用有机溶剂萃取后使还原性物质滞留于水中而除去。分析化验某一成份相对固定的污水时,积累一定时间经验后,可以明确其中的干扰物质种类,然后采取增减排除干扰物质的种类,尽量简化分析步骤。

  蒸馏操作是挥发酚测定的一个关键步骤,为使挥发酚蒸出,应将待蒸馏样品的pH值调节至4左右(甲基橙的变范围)。此外,由于挥发酚的挥发过程较为缓慢,故收集馏出液的体积应与原待蒸馏样品的体积相当,否则将影响测定结果。如果发现馏出液呈白浑浊,应当在酸性条件下再蒸一次,若第二次馏出液仍呈白浑浊,则可能是水样中有油分和焦油类的存在,须作相应的处理。

  使用溴化容量法测得的总量是相对值,严格遵循国家标准规定的操作条件,包括加入液量、反应温度和时间等。另外,三溴苯酚沉淀容易包裹I2,因此在接近滴定点时,应充分剧烈摇动。

  55. 使用4--氨基安替比林分光光度法测定挥发酚的注意事项有哪些?

  使用4--氨基安替比林(4-AAP)分光光度法时,操作都应在通风橱内进行,并利用通风橱的机械吸风,以消除具有毒性的苯对操作人员的不良影响。

  试剂空白值的增高,除可因由蒸馏水、玻璃器皿和其他试验装置中受沾污,以及由于室温升高致使萃取溶剂挥发等因素外,主要来自易吸潮结块和氧化的4-AAP试剂,因此要采取必要措施4-AAP的纯度。反应显易受pH值影响,要严格控制反应溶液的pH值在9.8~10.2之间。

  苯酚稀标准溶液不稳定,每毫升含1mg苯酚的标准溶液置于冰箱内,使用时间不能超过30d,每毫升含10μg苯酚的标准溶液应在配制当天使用,每毫升含1μg苯酚的标准溶液在配制后2h内使用。

  一定要按照标准操作方法按顺序加入试剂,每加入一种试剂后都应摇匀。如果加入缓冲液后不摇匀,会使实验溶液内氨浓度不均匀,对反应有影响。氨水不纯可使空白值增加10倍以上,开瓶后的氨水如果长时间未用完,应蒸馏后再用。

  生成的氨基安替比林红染料在水溶液中只能稳定约30min,萃取到氯仿中后可以稳定4h,时间过长则颜由红变黄。如果因为4--氨基安替比林不纯导致空白颜过深,可改用490nm波长测定以提高测定精度。4--氨基安替比不纯时可用甲醇溶解后,再用活性炭过滤重结晶精制。

  56. 石油类的测定方法有哪些?

  石油是由烷烃、环烷烃、芳香烃以及不饱和烃和少量硫、氮氧化合物所组成的一种复杂的混合物。水质标准中将石油类规定为保护水生生物的毒理学及人体感官,是因为石油类物质对水生生物的影响很大。当水中石油类的含量在0.01~0.1mg/L时,就会干扰水生生物的摄食和繁殖。因此,我国渔业水质标准规定不得超过0.05mg/L,农灌用水标准规定不得超过5.0mg/L,污水综合排放二级标准规定不得超过10mg/L。一般进入曝气池的污水石油类的含量不能超过50mg/L。

  由于石油的成份复杂、性质差异很大,再加上受分析方法所限,很难建立一个适用于各种成份的统一标准。当水中油含量﹥10mg/L时,可使用重量法进行测定,其缺点是操作复杂、轻质油在蒸除石油醚和烘干时易损失。当水中油含量为0.05~10mg/L时,可使用非分散红外光度法、红外分光光度法和紫外分光光度法进行测定,其中非分散红外光度法和红外光度法是检测化验石油类的国家标准(GB/T16488—1996)。紫外分光光度法是以分析嗅味、毒性较大的芳烃为主,是指能被石油醚萃取出、并能在特定波长下有吸收特征的物质,并不能包括的石油类。

  57. 石油类测定的注意事项有哪些?

  分散红外光度法和红外光度法使用的萃取剂是四氯化碳或三氯三氟乙烷,重量法和紫外分光光度法使用的萃取剂是石油醚。这些萃取剂都有毒,因此操作时谨慎小心,并在通风橱内进行。

  标准油应当采用待监测污水中的石油醚或四氯化碳萃取物,有时也可使用其他被认定的标准油品,或用正十六烷、异辛烷和苯按65:25:10的体积比配制而成。萃取标准油、标准油曲线绘制及测定废水样品所用的石油醚应为同一批号,否则会因为空白值不同而产生系统误差。

  测定油时要单独采样,采样瓶一般使用广口玻璃瓶,切不可使用塑料瓶,而且水样不能装满采样瓶,上面应留有空隙。水样如果不能当天分析,可加入盐酸或硫酸使其pH值﹤2,以抑制微生物的生长,并置于4oC冷藏箱内保存。分液漏斗上的活塞不能涂抹凡士林等油性润滑油脂。

  58. 常见重金属及无机性非金属有毒有害物质水质有哪些?

  常见的水中重金属及无机性非金属有毒有害物质主要有汞、镉、铬、铅及硫化物、氰化物、氟化物、砷、硒等,这些水质都是人体健康或保护水生生物的毒理学。国家污水综合排放标准(GB 8978-1996)对含有这些物质的污水排放作出了严格的规定。

  对于来水中含有这些物质的污水处理场,认真检测进水和二沉池出水的这些有毒有害物质的含量,以达标排放。一旦发现进水或出水超标,都应当立即采取措施,通过加强预处理和调整污水处理运行参数,使出水尽快达标。在常规的二级污水处理中,硫化物和氰化物是两种常见的无机性非金属有毒有害物质水质。

  59. 水中硫化物的形式有几种?

  硫在水中存在的主要形式有硫酸盐、硫化物和有机硫化物等,其中硫化物有H2S、HS-、S2-等三种形式,每种形式的数量与水的pH值有关,在酸性条件下,主要以H2S形式存在,pH值﹥8时,主要以HS-、S2-形式存在。水体中检出硫化物,往往可说明其已受到污染。某些工业尤其是石油炼制排放的污水中常含有一定量的硫化物,在厌氧菌的作用下,水中的硫酸盐也能还原成硫化物。

  认真分析化验污水处理系统有关部位污水的硫化物含量,以防出现硫化氢中毒现象。尤其是对汽提脱硫装置的进出水,因硫化物含量高低直接反映了汽提装置的效果,是一项控制。为自然水体中硫化物过高,国家污水综合排放标准规定硫化物含量不得超过1.0mg/L,采用好氧二级生物处理污水时,如果进水硫化物浓度在20mg/L以下,在活性污泥性能良好并及时排出剩余污泥的情况下,二沉池出水的硫化物是能够达标的。定时监测二沉池出水硫化物的含量,以便观察出水是否达标和确定如何调整运行参数。

  60. 常用检测水中硫化物含量的方法有几种?

  常用检测水中硫化物含量的方法有亚甲蓝分光光度法、对氨基N,N二甲基苯胺分光光度法、碘量法、离子电法等,其中有国家标准的硫化物测定方法是亚甲基蓝分光光度法(GB/T16489—1996)和直接显分光光度法(GB/T17133—1997),这两种方法的检出限分别为0.005mg/L和0.004mg/l,在水样不稀释的情况下,高检测浓度分别为0.7mg/L和25mg/L。对氨基N,N二甲基苯胺分光光度法(CJ/T60--1999)测定的硫化物浓度范围为0.05~0.8mg/L,因此,以上分光光度法只适用于检测硫化物含量较低的水样。当废水中硫化物浓度较高时,可以使用碘量法(HJ/T60—2000和CJ/T60--1999),碘量法的检测浓度范围为1~200mg/L。

  当水样浑浊、有或含有SO32-、S2O32-、硫醇、硫醚等还原性物质时,对测定干扰严重,需要进行预分离以消除干扰,常用的预分离方法是酸化-吹脱-吸收法。其原理是将水样酸化后,硫化物在酸性溶液中以H2S分子状态存在,用气体将其吹出,再用吸收液吸收,然后进行测定。

  具体做法是首先在水样中加入EDTA,以络合稳定大部分金属离子(如Cu2+、Hg2+、Ag+、Fe3+),避免这些金属离子与硫离子反应引起的干扰;还要加入适量盐酸羟胺,可以有效水样中氧化性物质与硫化物发生氧化还原反应。从水中吹取H2S时,搅拌比不搅拌回收率显著高,在搅拌下吹脱15min硫化物回收率可达100%;在搅拌下吹脱时间超过20min时,回收率略有下降。因此,通常在搅拌下吹脱,吹脱时间为20min。当水浴温度为35~55oC时,硫化物回收率能达到100%,水浴温度为65oC以上时,硫化物回收率略有降低。因此,一般选取佳水浴温度为35~55oC。

  61. 硫化物测定的其它注意事项有哪些?

  ⑴由于水中硫化物的不稳定,在水样采集时,不能对取样点曝气和剧烈搅动,采集后,要及时加入乙酸锌溶液,使之成为硫化锌混悬液。当水样为酸性时,应当补加碱溶液以防释放出硫化氢,水样满瓶后加塞,尽快送化验室进行分析。

  ⑵无论采用哪种方法分析,都对水样进行预处理以消除干扰和提高检测水平。呈物、悬浮物、SO32-、S2O32-、硫醇、硫醚以及其他还原性物质的存在,都会影响分析结果。消除这些物质的干扰的方法,可以采用沉淀分离、吹气分离、离子交换等。

  ⑶用于稀释和试剂溶液配制的水不能含有Cu2+和Hg2+等重金属离子,否则会因生成酸不溶硫化物使分析结果偏低,因此不要使用金属蒸馏器制得的蒸馏水,好使用去离子水或全玻璃蒸馏器蒸得的蒸馏水。

  ⑷同样乙酸锌吸收液中含有痕量重金属时也会影响测定结果,可以在充分振摇下,向1L乙酸锌吸收液中逐滴加入1mL新制备的0.05mol/L硫化钠溶液,静置过夜,再旋转摇动后用质地细密的定量滤纸过滤,弃去除滤液,这样可以排除吸收液中痕量重金属的干扰。

  ⑸硫化钠标准溶液不稳定,浓度越低越容易变化,于用前配制并立即标定。用于配制标准溶液的硫化钠结晶表面常含有亚硫酸盐,从而造成误差,好取用大颗粒结晶,并用水淋洗洗去亚硫酸盐后再称量。

  62. 氰化物测定的方法有哪些?

  氰化物的常用分析方法是容量滴定法和分光光度法,GB7486—87和GB7487—87分别规定了总氰化物和氰化物的测定方法。容量滴定法适用于高浓度氰化物水样的分析,测定范围为1~100mg/L;分光光度法有异烟酸 - 吡唑啉酮比法和砒啶-巴比妥酸比法两种,适用于低浓度氰化物水样的分析,测定范围为0.004~0.25mg/L。

  容量滴定法的原理是用标准硝酸银溶液滴定,氰离子与硝酸银生成可溶性银氰络合离子,过量的银离子与试银灵指示液反应,溶液由黄变成橙红。分光光度法的原理是在中性条件下,氰化物与氯胺T反应生成氯化氰,氯化氰再与砒啶反应生成戊烯二醛,戊烯二醛与砒唑啉酮或巴比妥酸生成蓝或红紫染料,颜的深浅与氰化物的含量成正比。

  滴定法和分光光度法测定时都存在一些干扰因素,通常需要加入特定剂等预处理措施,并进行预蒸馏。当干扰物质浓度不是很大时,只通过预蒸馏即可达到目的。

  63. 氰化物测定的注意事项有哪些?

  ⑴氰化物有剧毒,砒啶也有毒,分析操作时要格外小心谨慎,在通风橱内进行,避免沾污皮肤和眼睛。当水样中干扰物质浓度不是很大时,通过酸性条件下的预蒸馏,使简单氰化物转变为氰化氢从水中释放出来,再使之通过氢氧化钠洗涤液而收集起来,即可将简单氰化物和络合氰化物区分开来,并使氰化物浓度提高、降低检出限值。

  ⑵水样中干扰物质浓度较大,就应当首先采取有关措施,消除其影响。氧化剂的存在,会使氰化物分解,如果怀疑水中有氧化剂,可以采取加入适量硫代硫酸钠的方法排除其干扰。水样应贮存于聚乙烯瓶中,采集后,应在24h内进行分析。必要时,应加入固体氢氧化钠或浓氢氧化钠溶液,使水样pH值提高到12~12.5。

  ⑶硫化物在酸性蒸馏时,可呈硫化氢态被蒸出,并被碱液吸收,因此预先除去。除硫的方法有两个,一是在酸性条件下,加入不能氧化CN-的氧化剂(如高锰酸钾)将S2-氧化后再蒸馏;二是加入适量CdCO3或CbCO3固体粉末,使生成金属的硫化物沉淀,将沉淀过滤后再蒸馏。

  ⑷在酸性蒸馏时,油类物质也可被蒸出,此时可以用(1+9)醋酸调节水样pH值至6~7后,迅速用水样体积20%的己烷或氯仿进行一次(不可多次)萃取,随后立即用氢氧化钠溶液水样pH值提高到12~12.5再蒸馏。

  ⑸含高浓度的碳酸盐的水样在酸性蒸馏时,会释放出二氧化碳被氢氧化钠洗涤液收集而影响测定结果。遇高浓度的碳酸盐的污水时,可用氢氧化钙代替氢氧化钠固定水样,使水样pH值提高到12~12.5并经过沉淀后,再倾上清液于样品瓶中。

  ⑹采用光度法测定氰化物时,反应溶液的pH值直接影响显的吸光值。因此,严格控制吸收液的碱浓度,注意磷酸盐缓冲液的缓冲容量。在加入一定量的缓冲液后,需注意测定是否能达到适的pH值范围。另外,在磷酸盐缓冲液配制之后,以pH计测量其pH值,了解其是否符合要求,以避免因试剂不纯或含有结晶水而出现较大的偏差。

  ⑺氯铵T的有效氯含量的改变,也是氰化物测定不准的常见原因。当出现不显或显不呈线性、灵敏度低等现象时,除了溶液pH值出现偏差这个原因以外,往往与氯铵T质量有关。因此,氯铵T的有效氯的含量在11%以上,已分解或配制后出现混浊沉淀物的不能再用。

  64. 什么是生物相?

  在好氧生物处理过程中,不管采用何种构筑物的形式及何种工艺流程,都是通过处理系统中的活性污泥和生物膜微生物的代谢活动,将废水中的有机物氧化分解为无机物,从而使废水得到净化。处理后出水水质的好坏都同组成活性污泥和生物膜微生物的种类、数量及代谢活力等有关。废水处理构筑物的设计及日产运行管理主要是为活性污泥和生物膜微生物提供一个较好的生活环境条件,以便发挥其大的代谢活力。

  在废水生物处理过程中,微生物是一个综合群体:活性污泥由多种微生物组成,各种微生物之间相互影响,并共同栖息于一个生态平衡的环境中。不同种类的微生物在生物处理系统中,都有自己的生长规律。比如说,有机物浓度较高时,微生物是以有机物为食料的细菌占优势,数量自然多。而当细菌数量多时,出现以细菌为食料的原生动物,再后出现以细菌和原生动物为食料的微型后生动物。

  活性污泥中微生物的生长规律,有助于通过微生物镜检去掌握废水处理过程的水质情况。如果镜检中发现有大量鞭毛虫存在,说明废水中有机物浓度还较高,需要作进一步处理;当镜检发现游动型纤毛虫时,表明废水已经得到一定程度的处理;当镜检发现固着型纤毛虫,而游动型纤毛虫数量不多见时,则表明废水中有机物和游离细菌已相当少,废水已经接近稳定;当镜检发现轮虫时,表明水质已经比较稳定。

  65. 什么是生物相镜检?其作用是什么?

  生物相镜检一般只能作为对水质总体状况的估计,是一种定性的检测,不能作为废水处理厂出水水质的控制。为了监测微型动物演替变化状况,还需要定时进行记数。活性污泥和生物膜是生物法处理废水的主体,污泥中微生物的生长、繁殖、代谢活动以及微生物种类之间的演替情况可以直接反应处理状况。和有机物浓度及有毒物质的测定相比,生物相镜检要简便得多,可以了解活性污泥中原生动物种类变化和数量消长情况,由此可以初步判断污水的净化程度,或进水水质和运行条件是否正常。因此,除了利用物理、化学的手段来测定活性污泥的性质,还可以借助于显微镜观察微生物的个体形态、生长运动以及相对数量状况来判断废水处理的运行情况,以便及早发现异常情况,及时采取适当的对策,处理装置运行稳定,提高处理效果。

  66. 低倍镜观察生物相应注意哪些事项?

  低倍镜观察是为了观察生物相的全貌,要注意观察污泥絮粒的大小,污泥结构的松紧程度,菌胶团和丝状菌的比例其生长状况,并加以记录和作出必要的描述。污泥絮粒大的污泥沉降性能好,抗高负荷冲击能力强。

  污泥絮粒按平均直径的大小可以分为三等:污泥絮粒平均直径﹥500μm的称为大粒污泥,﹤150μm为小粒污泥,介于150~500μm之间的为中粒污泥。

  污泥絮粒性状是指污泥絮粒的形状、结构、紧密程度及污泥中丝状菌的数量。镜检时可把近似圆形的污泥絮粒称为圆形絮粒,与圆形截然不同的称为不规则形状絮粒。

  絮粒中网状空隙与絮粒外面悬液相连的称为开放结构,无开放空隙的称为封闭结构。絮粒中菌胶团细菌排列致密,絮粒边缘与外部悬液界限清楚的称为紧密絮粒,边缘界限不清的成为疏松絮粒。

  实践明,圆形、封闭、紧密的絮粒相互间易于凝聚、浓缩,沉降性能良好,反之则沉降性能差。

  67. 高倍镜观察生物相应注意哪些事项?

  用高倍镜观察,可以进一步看清微型动物的结构特征,观察时要注意微型动物的外形和内部结构,例如钟虫体内是否存在食物胞,纤毛虫的摆动情况等。观察菌胶团时,应注意胶质的厚薄和泽,新生菌胶团出现的比例等。观察丝状菌时,要注意丝状菌体内是否有类脂物质和硫粒积累,同时注意丝状菌体内细胞的排列、形态和运动特征以便初步判断丝状菌的种类(进一步鉴别丝状菌的种类需要使用油镜并将活性污泥样品染)。

  68. 生物相观察时对丝状微生物如何分级?

  活性污泥中丝状微生物包括丝状细菌、丝状真菌、丝状藻类(蓝细菌)等细胞相连且形成丝状的菌体,其中以丝状细菌为常见,它们同菌胶团细菌一起,构成了活性污泥絮体的主要成分。丝状细菌具有很强的氧化分解有机物的能力,但由于丝状细菌的比表面积较大,当污泥中丝状菌超过菌胶团细菌而占优势生长时,丝状菌从絮粒中向外伸展,阻碍絮粒间的凝聚使污泥SV值SVI值升高,严重时会造成污泥膨胀现象。因此,丝状细菌数量是影响污泥沉降性能的重要因素。

  根据活性污泥中丝状菌与菌胶团细菌的比例,可将丝状菌分成五个等级:①00——污泥中几乎无丝状菌;②±级——污泥中存在少量无丝状菌;③+级——污泥中存在中等数量丝状菌,总量少于菌胶团细菌;④++级——污泥中存在大量丝状菌,总量与菌胶团细菌大致相等;⑤+++级——污泥絮粒以丝状菌为骨架,数量明显超过菌胶团细菌而占优势。

  69. 生物相观察应注意活性污泥微生物的哪些变化?

  城市污水处理厂活性污泥中微生物种类很多,比较容易地通过观察微生物种类、形态、数量和运动状态的变化来掌握活性污泥的状态。而工业废水处理场活性污泥中会因为水质的原因,可能观察不到某种微生物,甚至没有微型动物,即不同的工业废水处理场的生物相会有很大差异。

  ⑴微生物种类的变化

  污泥中的微生物种类会随水质变化,随运行阶段而变化。污泥培养阶段,随着活性污泥的逐渐形成,出水由浊变清,污泥中的微生物发生有规律的演变。正常运行中,污泥微生物种类的变化也遵循一定的规律,由污泥微生物种类的变化可以推测运行状况的变化。比如污泥结构变得松散时,游动纤毛虫较多,而出水混浊变差时,变形虫和鞭毛虫就会大量出现。

  ⑵微生物活动状态的变化

  当水质发生变化时,微生物的活动状态也会发生一些变化,甚至微生物的形体也会随废水变化而变化。以钟虫为例,纤毛摆动的快慢、体内积累食物泡的多少、伸缩泡的大小等形态都会随生长环境的改变而变化。当水中溶解氧过高或过低时,钟虫的头部常会突出一个空泡。进水中难降解物质过多或温度过低时,钟虫会变得不活跃,其体内可见到食物颗粒的积累,会导致虫体中毒死亡。pH值突变时,钟虫体上的纤毛会停止摆动。

  ⑶微生物数量的变化

  活性污泥中的微生物种类很多,但某些微生物数量的变化也能反映出水质的变化。比如丝状菌,在正常运行时适量存在是有利的,但其大量出现会导致菌胶团数量的减少、污泥膨胀和出水水质变差。活性污泥中鞭毛虫的出现预示着污泥开始增长繁殖,但鞭毛虫数量增多又往往是处理效果降低的征兆。钟虫的大量出现一般是活性污泥生长成熟的表现,此时处理效果良好,同时可见少量的轮虫出现。如果活性污泥中轮虫大量出现,则往往意味着污泥的老化或过度氧化,随后就有可能出现污泥解体和出水水质变差。

  70. 镜检结果如何记录?

  对活性污泥或生物膜生物相进行镜检后,其结果记录方式可以参考表1。

  71. 生物膜法生物相与活性污泥有哪些不同?

  生物膜法处理系统的生物相特征与活性污泥工艺有所不同,主要表现在微生物种类和分布方面。表9—2列出了生物膜和活性污泥中出现的微生物在类型、种属和数量上的比较。

  一般来说,由于水质呈逐级变化的趋势和微生物生长环境条件的改善,生物膜系统存在的微生物种类和数量均比活性污泥工艺多,食物链长且较为复杂,尤其是丝状菌、原生动物和后生动物种类增加较多,而且还有一定比例的厌氧菌和兼性菌。在日光照射到的部位能够出现藻类,还能够出现滤池蝇这样的昆虫类生物。在分布方面的特点是沿生物膜厚度(由表及里)或进水流向(与进水接触时间不同),微生物的种类和数量呈现出较大差异。在多级处理的级或下向流填料层的上部,生物膜往往以菌胶团细菌为主,膜厚度亦较大(2~3mm);随着级数的增加或下向流填料层的下部,由于其接触到的水质已经经过部分处理,生物膜中会逐渐出现较多的丝状菌、原生动物和后生动物;微生物的种类不断增多,但生物膜的厚度却在不断减薄(1~2mm)。生物膜的表层的微生物都是好氧性的,而随着厚度的加大,微生物逐渐变成兼性乃至厌氧性。

  生物膜固着在滤料或填料上,生物固体停留时间SRT(泥龄)较长,因此能够生长世代时间长、增殖速度很小的微生物,如硝化菌等。在生物膜上还可能出现大量丝状菌,但不会出现污泥膨胀。和活性污泥法相比,生物膜上的生物中动物性营养者比例较大,微型动物的存活率也较高,能够栖息高营养水平生物,在捕食性纤毛虫、轮虫类、线虫类还栖息着寡毛类和昆虫。因此,生物膜上的食物链要比活性污泥中的食物链长,这也是生物膜法产生的污泥量少于活性污泥法的原因。

  废水水质的不同,每一级或每层填料上的特征微生物也会不同,即水质的变化会引起生物膜中微生物种类和数量的变化。在进水浓度增高时,可以观察到原有层次的特征性微生物下移的现象,即原先在前级或上层填料上的微生物可在后级或下层填料上出现。因此,通过生物相观察发现这样类似的变化来推断废水浓度或污泥负荷的变化。

  72. 水中细菌总数的含义是什么?

  细菌总数是指1mL水样在营养琼脂培养基中,经37oC、24h培养后所生长的菌落数。计量单位一般是每mL水中所含有的总菌数。水中的细菌总数往往同水体受到有机物污染的程度有关,是评价水质污染程度和对人体可能造成伤害的重要之一。

  细菌总数的分析方法采用标准平皿法对水样中的细菌记数,这是一种测定水中好氧和兼性厌氧的异养菌密度的方法。但由于没有一种营养基或任一环境条件能满足一个水样中细菌的生理要求,而且水中细菌能以单独个体、成对、链状、成簇或成团的形式存在,所以测得的菌落数实际上要低于被测水样中真正存活的细菌数目。

  73. 测定细菌总数的注意事项有哪些?

  用无菌操作法吸取1mL水样或2~3个适宜稀释倍数的稀释水样,注入灭菌平皿中,再倾注15mL营养琼脂培养基并与水样充分混匀,每个水样做两个平行样,另外每次检验还要做只倾注营养琼脂培养基的空白对照。

  培养之后,应立即进行平皿菌落计数。如果计数暂缓进行,可将平皿存放于5~10oC的环境下,但不能超过24h,而且也不可以将这种做法当作常规的操作方式。

  对平皿菌落计数时,可用肉眼观察,为遗漏,必要时应用放大镜检查。对那些看来相似、距离相近但并不相触的菌落,只要其距离小于小菌落的直径,就应当分别予以计数。对那些紧密接触但外观(形态或颜)有差异的菌落也要分别予以计数。

  在求同一稀释度的平均菌落数时,如果其中一个平皿有较大片状菌落生长时,则不宜采用,而应以无片状菌落生长的平皿作为该稀释度的菌落数。如果片状菌落不到平皿的一半、而其余部分菌落的分布又很均匀时,则可以将生长均匀的1/2平皿菌落计数后乘以2代表全皿菌落数。

  细菌总数的测定结果是以每个平皿菌落总数或同一稀释度平行实验平皿的平均菌落数乘以稀释倍数。当结果在100以内时按实际菌落数记录结果;大于100时,采用两位有效数字,用10的指数来表示,如果菌落数无法计数,在报告结果时要注明稀释倍数。

  74. 如何根据菌落计数结果计算水样的细菌总数?

  计算细菌总数的化验结果时,需要根据不同稀释度的平均菌落数进行比较和计算,其方法如下:

  ⑴首先选择平均菌落数在30~300之间的情况进行计算,当只用一个稀释度的平均菌落数符合此范围时,即以该平均菌落数乘其稀释倍数作为检验水样细菌总数的结果。

  ⑵如果有两个稀释度的平均菌落数在30~300之间,应当按二者的比值来决定计算方法。如果比值小于2,则以各自的平均菌落数乘以各自的稀释倍数后的平均值作为检验水样细菌总数的结果;比值大于2,则以其中平均菌落数乘以其稀释倍数后的较小者作为检验水样细菌总数的结果。

  ⑶如果稀释度的平均菌落数均大于300,则应当按稀释倍数大的平均菌落数乘以其稀释倍数作为检验水样细菌总数的结果。

  ⑷如果稀释度的平均菌落数均小于30,则应当按稀释倍数小的平均菌落数乘以其稀释倍数作为检验水样细菌总数的结果。

  ⑸如果稀释度的平均菌落数均不在30~300之间,则应当以接近30或300的平均菌落数乘以其稀释倍数作为检验水样细菌总数的结果。

  75. 大肠菌群数(值)的含义是什么?

  大肠菌群细菌是指一类好氧或兼性厌氧、能发酵乳糖、革兰氏染阴性、无芽孢的杆菌,因此有时也称粪大肠菌群或大肠杆菌,大肠菌群细菌在乳糖培养基中经37oC、24h培养后,能产酸产气。大肠菌群数(值)一般以1L或100mL水中含有的大肠菌群数量为计量单位。

  如果水源被粪便污染,则有可能被肠道病原菌污染而引起肠道传染疾病。由于肠道病原菌在占中微生物数量的比例相对较少,故从水中是自来水中分离病原菌常困难。大肠菌群细菌是肠道好氧菌中普遍和数量多的一类细菌,所以常将其作为粪便污染的指示菌。即根据水中大肠菌群的数目来判断水源是否受粪便所污染,并检测推测水源受肠道病原菌的可能性。

  76. 大肠菌群数的测定方法有哪些?

  总大肠菌群的常用测定方法有多管发酵法和滤膜法两种。

  多管发酵法是根据大肠菌群细菌能发酵乳糖、革兰氏染阴性、无芽孢、呈杆状等有关特性,通过三个步骤进行检验,来确定水样中的总大肠菌群数。多管发酵法以可能数Most Probable Number来表示实验结果,又简称MPN,实际上是根据统计学理论估计水体中大肠杆菌密度和卫生质量的一种方法,这种估计有大于实际数字的倾向。对于大肠菌群数含量的估计值,决定于那些既显示阳性又显示阴性的稀释度,在实际设计水样检验所要求重复的数目时,要根据所要求数据的准确度而定。

  滤膜法是用特制的灭菌微孔薄膜过滤水样,细菌被截留在膜上后,将薄膜贴在品红亚硫酸钠培养基上进行培养。因为大肠菌群细菌可发酵乳糖,在滤膜上培养培养后会出现紫红具有金属光泽的菌落,计数滤膜上出现的具有此特征的菌落数,即可计算出每L水样中含有的大肠菌群数。滤膜法可测定的水样体积较大,能比多管发酵法更快地获得结果,但测定浊度高、非大肠杆菌类细菌密度大时,效果较差。

  77. 什么是余氯?

  余氯是水经加氯接触一定时间后余留在水中的氯,其作用是保持持续的杀菌能力。从水进入管网到用水点之前,维持水中剂的作用,以可能出现的病原体危害和再增殖。这就要求向水中投加的剂,其投加量不仅能满足杀灭水中病原体的需要,而且还要保留一定的剩余量在水的输送过程中出现病原体的再增殖,如果使用氯,那么超出当时需要的这部分剂就是余氯。

  余氯有游离性余氯(Cl2、HOCl和OCl-)和化合性余氯(NH2Cl、NHCl2和NCl3)两种形式,这两种形式能同时存在于同一水样中,两者之和称为总余氯。游离性余氯杀菌能力强,但容易分解,化合性余氯杀菌能力较弱,但在水中持续的时间较长。一般水中没有氨或铵存在时,余氯为游离性余氯,而水中含有氨或铵时,余氯通常只含有化合性余氯,有时是余氯和化合性余氯共存。余氯量适当,过低起不到防治病原体的作用,过高则不仅造成成本的增加,而且在人体接触时可能造成对人体的伤害。

  从概念上看,余氯是针对氯气及氯系列剂而言的,当使用二氧化氯等其他非氯类剂时,就应该将余氯理解为接触一定时间后留在水中的剩余剂。

  78. 余氯的测定方法有哪些?各自的适用范围是什么?

  余氯的测定可以使用碘量滴定法、邻联甲苯胺目视比法、N,N-二乙基对苯二胺(DPD)亚铁滴定法(GB 11897-89)、N,N-二乙基对苯二胺分光光度法(GB 11898-89)等。碘量滴定法只能测定水样中的总余氯;邻联甲苯胺目视比法通过改变操作程序,能分别测定总余氯和游离性余氯;N,N-二乙基对苯二胺滴定法或分光光度法可测定浓度范围为0.03~5mg/L的游离氯或总氯,通过改变操作程序,还可以分别测定一氯胺、二氯胺和一些化合氯成分。

  碘量滴定法适用于总余氯含量大于1mg/L的水样,是测定加氯量常用的方法。邻联甲苯胺目视比法操作简单,是测定生活饮用水余氯的常用方法,测定范围为0.01~10mg/L。N,N-二乙基对苯二胺滴定法或分光光度法灵敏度高,可测定余氯含量较低的水样,适用于测定含有有机物的污水中的总有效氯,两个方法的测定范围分别为0.05~1.5mg/L和0.03~5mg/L。

  79. 余氯测定的注意事项有哪些?

  氯在水溶液中不稳定,是在浓度较低时,含量会迅速减少。受到阳光和其他强光的照射或受到搅动,氯的还原速度会加快。因此取样后不能贮存,立即开始氯的测定,同时避免光线照射和搅动水样。

  在测定过程的操作都要避免阳光直接照射,好在尽可能低的温度下和柔和的光线下进行,而且的比法都需要用颜和浊度空白来补偿原水的颜和度,尤其是浊度和度较高时测定空白值。

  使用邻联甲苯胺目视比法测定余氯时,如果水样与标准邻联甲苯胺溶液混合均匀后立即比,所测结果是游离性余氯,如果在暗处放置10min使产生高度后再进行比,所得结果是总余氯。总余氯减去游离性余氯即是化合性余氯。

  使用邻联甲苯胺目视比法测定时,如果余氯量大,会产生桔黄;如果水样碱度过高而余氯量小时,会产生淡绿或淡蓝。此时可多加1mL邻联甲苯胺标准溶液,即可产生正常的淡黄。

  钼是重要的金属资源,通常作为合金元素加入特钢及不锈钢材料中,广泛应用于船舶、机械、能源管道等领域,是能源与装备制造领域的核心材料。近年来随着我国高端装备制造以及新能源产业的发展,钼的需求量持续旺盛,行业前景广阔。

  钼资源分布较为集中,主要分布在中国、美国、秘鲁等地。其中,中国是钼资源储量的国家,2022年中国钼矿资源储量为370万吨,占资源储量的30.83%。其次为美国和秘鲁,2022年钼矿资源储量分别为270万吨和240万吨,分别占比22.5%和20%。

  数据来源:USGS、中商产业研究院整理

  得益于的钼资源储量,中国成为大的钼生产国,近年来随着行业下游产业的不断发展,推动了我国钼行业发展。根据钼协会公布的数据,2022年国内钼产量达到11.28万吨,同比增长12%。中商产业研究院分析师预测,2023年中国钼产量将持续增长至11.88万吨。

  数据来源:IMOA、中商产业研究院整理

  钼作为“战略稀有小金属”,广泛应用于钢铁领域,在传统钢铁领域和新能源领域需求都较为旺盛。中国仍然是大钼消费国,根据钼协会公布的数据,2022年中国钼消费量为12.20万吨,同比增长9%。中商产业研究院分析师预测,2023年中国钼消费量将达到12.91万吨。

  数据来源:IMOA、中商产业研究院整理

  钼金属行业发展前景

  1.及国内钼供需将保持紧平衡

  自金融危机以来,市场方面,由于银行信贷、信用等级受到金融危机冲击,目前仍处于缓慢复苏阶段,钼矿的启动及扩产情况不稳定,供应不会大幅增长。2021年供应端海外铜钼伴生矿存在生产扰动,产量下降;需求端在缓解经济恢复的背景下有所回升。同时,我国实施更严格的产业,也将有效放缓国内钼供应的增速。

  2017-2021年,在钼供应端产量保持稳定,而钼需求稳步提升的背景下,和国内钼行业供需格都呈现紧平衡状态。展望未来,2023年钼供需缺口预计进一步扩大,国内2022-2023年钼供需保持小幅缺口,紧平衡格支撑钼价持续上涨。

  2.下游行业的持续发展将带动钼的需求

  我国钢铁行业正在经历结构调整,将向高性能高附加值的不锈钢、特种钢等合金钢方向发展。在国内特钢需求拉动下,国内钼需求增速远高于。同时,我国工业化及城镇化进程的加速推进,以及印度、巴西、中东等其他新兴国家钢铁产量仍将保持增长,也将进一步拉升对钼的需求。

  除此之外,钼作为“能源金属”,石油领域对钼的需求将大幅增加;航天行业的发展也将增加对钼的需求;钼的应用领域不断扩大,新能源行业的发展将进一步促进钼的需求增长。

  更多资料请参考中商产业研究院发布的《中国钼金属市场前景及投资机会研究报告》,同时中商产业研究院还提供产业大数据、产业、行业研究报告、行业白皮书、商业计划书、可行性研究报告、园区产业规划、产业链图谱、产业指引、产业链考察&推介会等服务。

  【论文】氧化铝陶瓷的低温钼金属化研究

  【论文】提高钼金属回收率探讨与分析

  钼金属可行性研究报告

  【论文】钼基非金属材料研究进展

  金属钼行业研究报告

  2014-2018年中国金属钼市场行情态势及投资前景研究报告

  2014-2018年中国金属钼行业市场分析及投资方向研究报告

  粉冶金属钼的动态再结晶行为研究

推荐新闻

查看更多

  • 上海哪里有回收废水银的

    上海哪里有回收废水银的  钨钢钻头的回收使用:  1、钨钢钻头在经过特定方式处理后,可以用于加工成新型
  • 徐州有没有上门回收钨铜的

    徐州有没有上门回收钨铜的  首先,废旧钨钢材料回收价不确定,要看是什么级别的钨钢。比如:锐正钨钢铣刀
  • 徐州什么地方有废钨钢回收

    徐州什么地方有废钨钢回收  钨钢回收是在80元左右一斤,如果纯粹按照硬质合金废料回收的话,价格一般在80
  • 淄博什么地方有废钨钢回收

    淄博什么地方有废钨钢回收  废品回收好处  物资回收能够节能环保,防止对地球发生过多的消费累赘。  

免责声明:本页面所展现的公司信息、产品信息及其他相关信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息来源商铺的所属发布者完全负责,中科商务网对此不承担任何保证责任。

友情提醒:建议您在购买相关产品前务必确认供应商资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防欺诈行为。 建议您在搜索产品时,优先选择带有标识的会员,该为中科商务网VIP会员标识,信誉度更高。信息侵权/有误,申请删除

上海钧驰金属材料有限公司 版权所有

公司地址:上海市青浦区华新镇华益路318号 网址:http://ycjs168.zk71.com/

主营产品:钨钢回收,钨铜回收,水银回收。

技术支持:中科商务网     ICP备案号:粤ICP备12005190号